-
Notifications
You must be signed in to change notification settings - Fork 1
/
malfl.py
236 lines (193 loc) · 11.3 KB
/
malfl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from utils import *
import copy
import numpy as np
import torch
import torch.nn as nn
from grid import Grid
from agent import Agent
from policy_improvement import SoftPolicy
from modeling_other_agents import PolicyEstimation
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = ConfigParser()
config.read("config.cfg")
class MALFL(Grid):
def __init__(self, agent_one: Agent, agent_two: Agent, learning_method: SoftPolicy,
policy_estimation: PolicyEstimation):
super(MALFL, self).__init__()
self.agent_one = agent_one
self.agent_two = agent_two
self.learning_method = learning_method
self.policy_estimation = policy_estimation
self.episode_length = int(config['PARAMS']['episode_length'])
self.alpha = float(config['PARAMS']['alpha'])
self.gamma = float(config['PARAMS']['gamma'])
self.beta = float(config['PARAMS']['beta'])
self.n_iteration = int(config['PARAMS']['n_iteration'])
self.num_episode = int(config['PARAMS']['num_episode'])
self.next_state_tensor = next_state_tensor
self.setNumpySeed()
self.reward_adam_lr = float(config['REWARDS']['reward_adam_lr'])
self.reward_adam_epoch = int(config['REWARDS']['reward_adam_epoch'])
self.first_iteration = True
self.last_iteration = False
def setNumpySeed(self):
seed = config['PARAMS']['seed']
try:
np.random.seed(int(seed))
except ValueError:
pass
def choose_action(self, policy, state_agent_one_prime=None, state_agent_two_prime=None, prime=None):
if not prime:
action = np.random.choice(self.actions, p=policy[self.agent_one.state, self.agent_two.state, :].flatten())
else:
assert isinstance(state_agent_one_prime, int) and isinstance(state_agent_two_prime, int)
action = np.random.choice(self.actions, p=policy[state_agent_one_prime, state_agent_two_prime, :].flatten())
return action
def reward_expectation(self, improved_pi_other_, current_pi_other_, current_pi_self_, agent_type_self):
improved_pi_other = improved_pi_other_.detach().clone()
current_pi_other = current_pi_other_.detach().clone()
current_pi_self = current_pi_self_.detach().clone()
part_1_for_other_agent_rew_expectation = self.alpha * torch.log(improved_pi_other)
kl_part1_for_other_agent_rew_expectation = (
current_pi_other * (torch.log(current_pi_other) - torch.log(improved_pi_other))).sum(-1)
kl_part1_for_other_agent_rew_expectation = torch.tensordot(
self.next_state_tensor.float(), kl_part1_for_other_agent_rew_expectation.float(), dims=[[4, 5], [0, 1]])
if agent_type_self == "agent_one":
kl_for_other_agent_rew_expectation = (
kl_part1_for_other_agent_rew_expectation * current_pi_self.unsqueeze(3)).sum(2)
else:
kl_for_other_agent_rew_expectation = (
kl_part1_for_other_agent_rew_expectation * current_pi_self.unsqueeze(2)).sum(3)
part_2_for_other_agent_rew_expectation = self.alpha * self.gamma * kl_for_other_agent_rew_expectation
other_agent_reward_expectation = part_1_for_other_agent_rew_expectation + part_2_for_other_agent_rew_expectation
return other_agent_reward_expectation
def run_episode(self):
num_step = 0
while num_step < self.episode_length:
action_agent_one = self.choose_action(self.agent_one.pi)
action_agent_two = self.choose_action(self.agent_two.pi)
r_agent_one = self.agent_one.reward(self.agent_one.state, self.agent_two.state)
r_agent_two = self.agent_two.reward(self.agent_one.state, self.agent_two.state)
state_agent_one_prime = self.agent_one.step(action_agent_one, self.agent_one.state)
state_agent_two_prime = self.agent_two.step(action_agent_two, self.agent_two.state)
# Next action
action_agent_one_prime = self.choose_action(self.agent_one.pi, state_agent_one_prime, state_agent_two_prime,
prime=True)
action_agent_two_prime = self.choose_action(self.agent_two.pi, state_agent_one_prime, state_agent_two_prime,
prime=True)
# Bellman updates for learning the expectation of the Q function directly
self.learning_method.bellman_update(self, action_agent_one, state_agent_one_prime, state_agent_two_prime,
action_agent_one_prime, r_agent_one, self.agent_one)
self.learning_method.bellman_update(self, action_agent_two, state_agent_one_prime, state_agent_two_prime,
action_agent_two_prime, r_agent_two, self.agent_two)
# Keep track of states and action performed by the other agent
self.agent_one.counter[self.agent_one.state, self.agent_two.state, action_agent_two] += 1
self.agent_two.counter[self.agent_one.state, self.agent_two.state, action_agent_one] += 1
self.agent_one.state = state_agent_one_prime
self.agent_two.state = state_agent_two_prime
num_step += 1
def policy_iteration(self):
# lists of reward expectations
agent_one_reward_expectation = []
agent_two_reward_expectation = []
# list of actual policies
agent_one_policies = []
agent_two_policies = []
# list of estimated policies
estimated_agent_one_policies = []
estimated_agent_two_policies = []
print("Starting Policy Iteration:", end="\n")
for i in range(self.n_iteration):
# Reset the counts
self.agent_one.counter = np.zeros([self.size * self.size, self.size * self.size, self.n_actions])
self.agent_two.counter = np.zeros([self.size * self.size, self.size * self.size, self.n_actions])
self.agent_one.reset_exp_q_val()
self.agent_two.reset_exp_q_val()
if i > 0:
self.first_iteration = False
if i == self.n_iteration - 1:
self.last_iteration = True
# Agents evaluate their own policies and produce trajectories
for _ in range(self.num_episode):
self.agent_one.return_to_start()
self.agent_two.return_to_start()
self.run_episode()
self.policy_estimation.estimate_policies_from_trajectories(self)
estimated_agent_one_pi = copy.deepcopy(self.agent_two.estimated_other_pi)
estimated_agent_two_pi = copy.deepcopy(self.agent_one.estimated_other_pi)
# append the estimated policies
estimated_agent_one_policies += [torch.tensor(estimated_agent_one_pi, device=device)]
estimated_agent_two_policies += [torch.tensor(estimated_agent_two_pi, device=device)]
# Compute expectation of rewards
current_pi_agent_two, current_pi_agent_one = (
copy.deepcopy(self.agent_two.pi), copy.deepcopy(self.agent_one.pi))
agent_one_policies += [torch.tensor(current_pi_agent_one, device=device)]
agent_two_policies += [torch.tensor(current_pi_agent_two, device=device)]
# We can compute the reward expectation only starting from the second iteration step
if i >= 1:
for agent in [self.agent_one, self.agent_two]:
old_pi_other, old_pi_self = (estimated_agent_two_policies[-2], agent_one_policies[-2]) \
if agent.agent_type == "agent_one" else (
estimated_agent_one_policies[-2], agent_two_policies[-2])
improved_pi_other = estimated_agent_two_policies[-1] if agent.agent_type == "agent_one" else \
estimated_agent_one_policies[-1]
other_rew_exp = self.reward_expectation(improved_pi_other, old_pi_other, old_pi_self,
agent_type_self=agent.agent_type)
if agent.agent_type == 'agent_one':
agent_two_reward_expectation += [other_rew_exp]
else:
agent_one_reward_expectation += [other_rew_exp]
# Policy improvement
self.learning_method.soft_policy_improvement(self)
return agent_two_reward_expectation, agent_one_reward_expectation, agent_one_policies, agent_two_policies
def loss_fn(self, agent, r_sh, target, p_list, k):
r_sh_rep = r_sh[k + 1].repeat(1, self.n_actions)
r_sh_t = torch.reshape(r_sh_rep, (self.size * self.size, self.size * self.size, self.n_actions))
p_list_repeated_k = torch.reshape(p_list[k].repeat(1, 1, self.n_actions), (
self.size * self.size, self.size * self.size, self.n_actions, self.n_actions))
r_sh0 = torch.sum((p_list_repeated_k * r_sh[0]), 2) if agent.agent_type == "agent_one" \
else torch.sum((p_list_repeated_k * r_sh[0]), 3)
part_1 = r_sh0 + r_sh_t
part_2 = r_sh_t.unsqueeze(3).repeat(1, 1, 1, self.n_actions)
part_2 = part_2.unsqueeze(4).repeat(1, 1, 1, 1, self.n_states)
part_2 = part_2.unsqueeze(5).repeat(1, 1, 1, 1, 1, self.n_states)
next_state_t = self.next_state_tensor
part_2 = part_2 * next_state_t
part_2 = part_2.sum(-1).sum(-1)
part_2 = torch.sum((p_list_repeated_k * part_2), 2) if agent.agent_type == "agent_one" \
else torch.sum((p_list_repeated_k * part_2), 3)
t_detach = target.detach()
curr_loss = ((part_1 - self.gamma * part_2 - t_detach) ** 2)
curr_loss = curr_loss.sum()
return curr_loss
def param_regression(self, r_list, p_list, agent):
# recover state-action reward and shaping
r_ = nn.Parameter(
torch.zeros(size=[self.n_states, self.n_states, self.n_actions, self.n_actions], device=device),
requires_grad=True)
r_sh = (r_,) + tuple(
nn.Parameter(torch.zeros(size=[self.n_states, self.n_states], device=device), requires_grad=True) for _ in
range(self.n_iteration))
optimizer = torch.optim.Adam(r_sh, lr=self.reward_adam_lr)
for epoch in range(self.reward_adam_epoch):
loss = 0
for k, target in enumerate(r_list):
loss += self.loss_fn(agent, r_sh, target, p_list, k)
optimizer.zero_grad()
loss.backward()
optimizer.step()
r_ = r_.cpu().detach().numpy()
return r_
def reward_recovering(self):
agent_two_reward_expectation_list, agent_one_reward_expectation_list, agent_one_p_list, agent_two_p_list = \
self.policy_iteration()
rew_agent_two = None
rew_agent_one = None
for agent in [self.agent_one, self.agent_two]:
if agent.agent_type == "agent_one":
rew_agent_two = self.param_regression(agent_two_reward_expectation_list, agent_one_p_list, agent)
else:
rew_agent_one = self.param_regression(agent_one_reward_expectation_list, agent_two_p_list, agent)
self.agent_one.estimated_other_r = rew_agent_two
self.agent_two.estimated_other_r = rew_agent_one