-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipelineBanglaT5.py
326 lines (211 loc) · 11.1 KB
/
pipelineBanglaT5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import random
from tqdm import tqdm
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, fbeta_score
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainingArguments, Seq2SeqTrainer
from transformers import AdamW
import datasets
import sys
from utils import tokenizeInstances, punctuations_preprocessing
from customDataset import LoadDataset, collate_fn
import warnings
warnings.filterwarnings('ignore')
if __name__ == "__main__":
sys.stdout = open('/home/uiu/nlp/GEC/BanglaGEC/outputs/pipelineBanglaT5.txt', 'w')
train_df = pd.read_csv('/home/uiu/nlp/GEC/BanglaGEC/corpus/train.csv')
valid_df = pd.read_csv('/home/uiu/nlp/GEC/BanglaGEC/corpus/valid.csv')
test_df = pd.read_csv('/home/uiu/nlp/GEC/BanglaGEC/corpus/test.csv')
print(f"#no. of training instances: {len(train_df)}")
print(f"#no. of validation instances: {len(valid_df)}")
print(f"#no. of test instances: {len(test_df)}")
print(f"Total: {len(train_df) + len(valid_df) + len(test_df)}")
print("train and test df are loaded")
# ---------------------------------------------------------------
tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_banglaparaphrase", use_fast=False)
# ---------------------------------------------------------------
print("training instances are being tokenized")
train_sources_encodings, train_mask_encodings, train_targets_encodings = tokenizeInstances(tokenizer, train_df)
# ---------------------------------------------------------------
print("validation instances are being tokenized")
valid_sources_encodings, valid_mask_encodings, valid_targets_encodings = tokenizeInstances(tokenizer, valid_df)
# ---------------------------------------------------------------
print("test instances are being tokenized")
test_sources_encodings, test_mask_encodings, test_targets_encodings = tokenizeInstances(tokenizer, test_df)
# ---------------------------------------------------------------
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# ---------------------------------------------------------------
train_dataset = LoadDataset(train_sources_encodings, train_mask_encodings, train_targets_encodings)
valid_dataset = LoadDataset(valid_sources_encodings, valid_mask_encodings, valid_targets_encodings)
test_dataset = LoadDataset(test_sources_encodings, test_mask_encodings, test_targets_encodings)
# ---------------------------------------------------------------
train_loader = DataLoader(train_dataset, batch_size=8, collate_fn=collate_fn, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=8, collate_fn=collate_fn, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=8, collate_fn=collate_fn, shuffle=False)
print("training, validation and test dataloaders are in action with collate fn")
# ---------------------------------------------------------------
model_checkpoint = 'csebuetnlp/banglat5_banglaparaphrase' # 990M
# model_checkpoint = 't5-small' # 242M
# model_checkpoint = 'Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU' # MarianMT 298M
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
model.to(device)
print("model is in gpu now")
# ---------------------------------------------------------------
optim = AdamW(model.parameters(), lr=5e-5)
N_EPOCHS = 20
epoch = 0
loss = 10e9
# ---------------------------------------------------------------
print("transfering the knowledge")
PATH = '/home/uiu/nlp/GEC/HFPipeline/checkpoints/saved_model_BPBanglaT5.pth'
if os.path.exists(PATH):
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
print("knowledge transfered")
# ---------------------------------------------------------------
PATH = '/home/uiu/nlp/GEC/HFPipeline/checkpoints/GECBanglaT5.pth' # banglaT5 76.96%
# PATH = '/home/uiu/nlp/GEC/HFPipeline/checkpoints/saved_model_gecV4T5Small.pth' # T5Small 71.44%
if os.path.exists(PATH):
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print("incorporated model checkpoint")
# ---------------------------------------------------------------
print("training has started")
for epoch in range(epoch, N_EPOCHS):
print(f"Epoch = {epoch}")
epoch_loss = 0
model.train()
for (input_ids, attention_mask, target_ids) in tqdm(train_loader):
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
target_ids = target_ids.to(device)
optim.zero_grad()
predictions = model(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
loss = predictions[0]
loss.backward()
epoch_loss += loss.item()
optim.step()
epoch_loss = epoch_loss/len(train_loader)
print(f"Loss = {epoch_loss}")
if epoch_loss < loss:
loss = epoch_loss
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'loss': loss,
}, PATH)
print(f"{'-'*20}\nModel Saved at {PATH}\n{'-'*20}\n")
# Training Loop Ends Here
# ---------------------------------------------------------------
PATH = '/home/uiu/nlp/GEC/HFPipeline/checkpoints/GECBanglaT5.pth' # banglaT5 76.96%
# PATH = '/home/uiu/nlp/GEC/HFPipeline/checkpoints/saved_model_gecV4T5Small.pth' # T5Small 71.44%
if os.path.exists(PATH):
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print("incorporated model checkpoint")
# ---------------------------------------------------------------
print("evaluation has started")
model.eval()
all_preds = []
true_corrections = []
pred_outputs = []
for (input_ids, attention_mask, target_ids) in tqdm(test_loader):
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
target_ids = target_ids.to(device)
predictions = model.generate(input_ids=input_ids, attention_mask=attention_mask)
# predictions = model.generate(input_ids=input_ids, attention_mask=attention_mask, labels=target_ids)
# print(predictions.shape, target_ids.shape)
trg_text = [tokenizer.decode(token, skip_special_tokens=True) for token in target_ids]
prd_text = [tokenizer.decode(token, skip_special_tokens=True) for token in predictions]
# print(f"prd_text: {prd_text}")
# print(f"trg_text: {trg_text}")
prd_text = punctuations_preprocessing(prd_text)
trg_text = punctuations_preprocessing(trg_text)
true_corrections += trg_text
pred_outputs += prd_text
# all_preds.extend([x == y for x, y in zip(prd_text, trg_text)])
# predictions = predictions[1]
# print(torch.argmax(predictions, dim= -1).shape)
# print(f"Accuracy: {sum(all_preds) / len(all_preds) * 100 : .2f}%")
acc = accuracy_score(y_true=true_corrections, y_pred=pred_outputs)
pr = precision_score(y_true=true_corrections, y_pred=pred_outputs, average='micro')
re = recall_score(y_true=true_corrections, y_pred=pred_outputs, average='micro')
# f1 = f1_score(y_true=true_corrections, y_pred=pred_outputs, average='micro')
f1 = fbeta_score(y_true=true_corrections, y_pred=pred_outputs, average='micro', beta=1)
f05 = fbeta_score(y_true=true_corrections, y_pred=pred_outputs, average='micro', beta=0.5)
print(f"Accuracy Score = {acc*100:.2f}%")
print(f"Precision Score = {pr:.5f}")
print(f"Recall Score = {re:.5f}")
print(f"F1 Score = {f1:.5f}")
print(f"F0.5 Score = {f05:.5f}")
# Evaluation Loop Ends Here
# ---------------------------------------------------------------
# for _ in range(20):
# idx = random.randint(0, 10)
# src_text = test_df['Erroneous'][idx]
# trg_text = test_df['Correct'][idx]
# predicted = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True).to(device))
# prd_text = [tokenizer.decode(token, skip_special_tokens=True) for token in predicted][0]
# print(f"Err: {src_text}\nPrd: {prd_text}\nTrg: {trg_text}\n{prd_text == trg_text}\n")
# prediction generation
# ---------------------------------------------------------------
preds = []
refs = []
refs4BERTscore = []
for idx in tqdm(range(len(test_df))):
# for idx in tqdm(range(1000)):
# idx = random.randint(0, 1000)
src_text = test_df['Erroneous'][idx]
trg_text = test_df['Correct'][idx]
predicted = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True).to(device))
prd_text = [tokenizer.decode(token, skip_special_tokens=True) for token in predicted][0]
# prd_text = ' '.join(([tokenizer.decode(token, skip_special_tokens=True) for token in predicted][0]).split()[1:])
# prd_text = [tokenizer.decode(token, skip_special_tokens=True) for token in predicted][0]
# ----------------------------
# Preprocess pred_text:
# i. remove whitespace between word and punctuation
# TODO
src_text = punctuations_preprocessing(src_text)
prd_text = punctuations_preprocessing(prd_text)
trg_text = punctuations_preprocessing(trg_text)
# ----------------------------
# if idx % 8000 == 0:
# print(f"idx - {idx}\nErr: {src_text}\nPrd: {prd_text}\nTrg: {trg_text}\n{prd_text == trg_text}\n")
if idx % 5000 == 0:
print(f"idx - {idx}\nErr: {src_text}\nPrd: {prd_text}\nTrg: {trg_text}\n{prd_text == trg_text}\n")
preds.append(prd_text)
refs.append([trg_text])
refs4BERTscore.append(trg_text)
# prediction generation
sacrebleu = datasets.load_metric('sacrebleu')
sacrebleuResults = sacrebleu.compute(predictions=preds, references=refs)
print(f"sacrebleuResults = {round(sacrebleuResults['score'], 1)}")
# rougescore = datasets.load_metric('rouge')
# rougescoreResults = rougescore.compute(predictions=preds, references=refs4BERTscore)
# print(f"rougeLscoreResults = {rougescoreResults['rougeL'].high.fmeasure*100}")
# # print(f"{rougescoreResults['rougeL'].high.fmeasure*100}")
bertscore = datasets.load_metric('bertscore')
bertscoreResults = bertscore.compute(predictions=preds, references=refs4BERTscore, lang="bn")
print(f"bertscoreResults = {sum(bertscoreResults['f1'])/len(bertscoreResults['f1'])*100:.2f}")
# print(f"{sum(bertscoreResults['f1'])/len(bertscoreResults['f1'])*100:.2f}")
acc = accuracy_score(y_true=refs4BERTscore, y_pred=preds)
pr = precision_score(y_true=refs4BERTscore, y_pred=preds, average='micro')
re = recall_score(y_true=refs4BERTscore, y_pred=preds, average='micro')
f1 = fbeta_score(y_true=refs4BERTscore, y_pred=preds, average='micro', beta=1)
f05 = fbeta_score(y_true=refs4BERTscore, y_pred=preds, average='micro', beta=0.5)
print(f"Accuracy Score = {acc*100:.2f}%")
print(f"Precision Score = {pr:.5f}")
print(f"Recall Score = {re:.5f}")
print(f"F1 Score = {f1:.5f}")
print(f"F0.5 Score = {f05:.5f}")
sys.stdout.close()