forked from moozeq/sad2-bayesian-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReport.Rmd
152 lines (109 loc) · 2.23 KB
/
Report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
title: "Bayesian networks"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE, fig.width = 12, fig.height = 12, fig.align = 'center')
### Load support packages
if (!require(ggplot2)) install.packages("ggplot2")
if (!require(deal)) install.packages("deal",repos="http://lib.stat.cmu.edu/R/CRAN",dependencies=TRUE)
library("ggplot2")
library("deal")
load('data.RData')
# plotting BN
plot.bn <- function(BN, file=NULL) {
par(mar=c(0,0,0,0))
plot(BN, cexscale=13, unitscale=27, arrowlength=0.1, xr=c(0, 350), yr=c(20,370))
if (!is.null(file)) {
plt <- recordPlot()
pdf(file)
replayPlot(plt)
dev.off()
}
}
# plots edges frequencies
plot_edges_df = function(edges_df) {
g = ggplot(edges_df, aes(x=name, y=freq)) + geom_bar(stat="identity") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
return(g)
}
```
## 1
10 most variant genes:
```{r}
names(genes) # print selected genes
```
## 2
Prior structure:
```{r}
plot.bn(G0)
```
## 3
Local probability distributions:
```{r}
localprob(G0)
```
Local probability distribution for gene YBR088C:
```{r}
localprob(G0)$YBR088C
```
## 4
```{r echo=TRUE, eval=FALSE}
prior0 <- jointprior(G0, 5) # equivalent to imaginary sample size = 5
```
## 5
Initial BN score:
```{r}
print(G1$score)
```
## 6
BN* network:
```{r}
plot.bn(BN)
```
BN* score:
```{r}
print(BN$score)
```
## 7
Genes variances:
```{r}
print(genes.vars)
```
## 8
```{r eval=FALSE, echo=TRUE}
# perturbed data
perturbed_data = list()
for (i in 1:30) {
p_genes = data.frame(genes)
for (gene in colnames(p_genes)) {
p_genes[gene] = p_genes[gene] + rnorm(nrow(p_genes), mean=0, sd=sqrt(genes.vars[gene] / 10))
}
perturbed_data[[i]] = p_genes
}
```
## 9
```{r fig.height=8}
ggplot(yhr143w.melted, aes(x=variable, y=value)) + geom_boxplot() + labs(x = 'experiment', y = 'empirical distribution')
```
## 10
PBN5 network:
```{r}
plot.bn(p_networks[[5]])
```
## 11
```{r fig.height=8}
plot_edges_df(BN_edges_df)
```
Spurious edges of BN*:
```{r}
print(BN_edges_df[BN_edges_df$freq < 0.5,])
```
## 12
```{r fig.height=8}
plot_edges_df(not_BN_edges_df)
```
Edges that might be missing in BN*:
```{r}
print(not_BN_edges_df[not_BN_edges_df$freq >= 0.33,])
```