forked from GRAP-UdL-AT/fruit_detection_in_LiDAR_pointClouds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainingCCwmtoaFP.m
54 lines (45 loc) · 2.38 KB
/
trainingCCwmtoaFP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [SVMModelFP,SVMModelCCwoa,SVMModelCCwmtoa]=trainingCCwmtoaFP(CCfeatures,trial,Training_features,...
StandardizeFP,KernelFunctionFP,BoxConstrainFP,...
StandardizeCCwoa,KernelFunctionCCwoa,BoxConstrainCCwoa,...
StandardizeCCwmtoa,KernelFunctionCCwmtoa,BoxConstrainCCwmtoa,models_Directory,session)
%% Training SVM FP
disp(strcat(' FP training (Standardize: ',num2str(StandardizeFP),' - Kernel: ',KernelFunctionFP,' - BoxConstrain: ',num2str(BoxConstrainFP),')'))
t=toc;
X=CCfeatures(:,Training_features);
Y=(CCfeatures(:,1)>0);
if size(unique(Y),1)==1
BoxConstrainFP=1;
end
SVMModelFP = fitcsvm(X,Y,'Standardize',StandardizeFP,'KernelFunction',KernelFunctionFP,'BoxConstrain',BoxConstrainFP);
disp(strcat(' realizado en:__', num2str(toc-t), ' seg.'))
t=toc;
%% Training SVM CCwoa
if BoxConstrainCCwoa>0
disp(strcat(' CCwoa training (Standardize: ',num2str(StandardizeCCwoa),' - Kernel: ',KernelFunctionCCwoa,' - BoxConstrain: ',num2str(BoxConstrainCCwoa),')'))
X=CCfeatures(CCfeatures(:,1)>0,Training_features);
Y=(CCfeatures(CCfeatures(:,1)>0,1)>1);
if size(unique(Y),1)==1
BoxConstrainCCwoa=1;
end
SVMModelCCwoa = fitcsvm(X,Y,'Standardize',StandardizeCCwoa,'KernelFunction',KernelFunctionCCwoa,'BoxConstrain',BoxConstrainCCwoa);
% saveCompactModel(SVMModelCCwoa,strcat(models_Directory,'SVMModelCCwoa_',trial(1:end-4),'_s',num2str(session),'.mat'));
disp(strcat(' realizado en:__', num2str(toc-t), ' seg.'))
t=toc;
else
SVMModelCCwoa=[];
end
%% Training SVM CCwmtoa
if BoxConstrainCCwmtoa>0
disp(strcat(' CCwmtoa training (Standardize: ',num2str(StandardizeCCwmtoa),' - Kernel: ',KernelFunctionCCwmtoa,' - BoxConstrain: ',num2str(BoxConstrainCCwmtoa),')'))
X=CCfeatures(CCfeatures(:,1)>1,Training_features);
Y=(CCfeatures(CCfeatures(:,1)>1,1)>2);
if size(unique(Y),1)==1
BoxConstrainCCwmtoa=1;
end
SVMModelCCwmtoa = fitcsvm(X,Y,'Standardize',StandardizeCCwmtoa,'KernelFunction',KernelFunctionCCwmtoa,'BoxConstrain',BoxConstrainCCwmtoa);
% saveCompactModel(SVMModelCCwmtoa,strcat(models_Directory,'SVMModelCCwmtoa_',trial(1:end-4),'_s',num2str(session),'.mat'));
disp(strcat(' realizado en:__', num2str(toc-t), ' seg.'))
t=toc;
else
SVMModelCCwmtoa=[];
end