-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllms.py
241 lines (188 loc) · 7.39 KB
/
llms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from typing import List
from pydantic import Extra
from tqdm import tqdm
import requests
import datetime, os, shutil
import params
import time
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.base import Embeddings
class AnlLLM(LLM, extra=Extra.allow):
def __init__(self, params):
super().__init__()
self.debug = params.anl_llm_debug
self.debug_fp = params.anl_llm_debug_fp
self.temperature = 0.9
self.top_p = 0.1
with open(params.anl_llm_url_path, 'r') as url_f:
self.anl_url = url_f.read().strip()
@property
def _llm_type(self) -> str:
return "ANL LLM API"
def _call(
self,
prompt: str,
stop = None,
run_manager = None,
) -> str:
if self.debug:
with open(self.debug_fp, 'a+') as debug_f:
debug_f.write(f'\n\n{datetime.datetime.now()}\nPrompt:{prompt}')
if stop is None:
stop_param = []
else:
stop_param = stop
req_obj = {'user': params.anl_user,
'model': params.anl_llm_model,
'prompt': [prompt],
'system': "",
'stop': stop_param,
'temperature': self.temperature,
'top_p': self.top_p}
result = requests.post(self.anl_url, json=req_obj)
if not result.ok:
print(f"error {result.status_code} ({result.reason})")
return
response = result.json()['response']
if self.debug:
with open(self.debug_fp, 'a+') as debug_f:
debug_f.write(f'Response:{response}')
return response
@property
def _identifying_params(self):
return {}
class ANLEmbeddingModel(Embeddings):
def __init__(self, params):
super().__init__()
with open(params.anl_embed_url_path, 'r') as url_f:
self.embed_url = url_f.read().strip()
self.pagination = 16 # Limit imposed by OpenAI
def embed_query(self, text: str):
return self._query_api_single(text)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
output_embeds = []
if len(texts) > self.pagination:
pbar = tqdm(total=(len(texts)//self.pagination), desc='Batch Embed Calls')
for i in range(0, len(texts), self.pagination):
embeds_page = self._query_api_multiple(texts[i:i+self.pagination])
if len(texts) > self.pagination:
time.sleep(3) # Prevent from overloading the API.
pbar.update(1)
output_embeds += embeds_page
if len(texts) > self.pagination:
pbar.close()
return output_embeds
def _query_api_multiple(self, texts: List[str]):
req_obj = {'user':params.anl_user, 'model':'', 'prompt':texts, 'stop':[]}
result = requests.post(self.embed_url, json=req_obj)
if result.ok:
return result.json()['embedding']
print(f"error {result.status_code} ({result.reason})")
def _query_api_single(self, text: str):
req_obj = {'user':params.anl_user, 'model':'', 'prompt':[text], 'stop':[]}
result = requests.post(self.embed_url, json=req_obj)
if result.ok:
return result.json()['embedding'][0]
print(f"error {result.status_code} ({result.reason})")
def init_text_splitter():
text_splitter = RecursiveCharacterTextSplitter( chunk_size=params.chunk_size,
chunk_overlap=params.chunk_overlap,
length_function = len,
separators = ['\n\n','\n', '.']
)
return text_splitter
def init_facility_qa(embeddings, params):
embed_path = params.embed_path
if params.init_docs:
text_splitter = init_text_splitter()
if os.path.exists(embed_path):
if params.overwrite_embeddings:
shutil.rmtree(embed_path)
else:
raise ValueError("Existing Chroma Collection")
all_texts = []
for doc_path in params.doc_paths: #Iterate over text files in each path
print ("Reading docs from", doc_path)
for text_fp in os.listdir(doc_path):
with open(os.path.join(doc_path, text_fp), 'r') as text_f:
book = text_f.read()
texts = text_splitter.split_text(book)
all_texts += texts
docsearch = Chroma.from_texts(
all_texts, embeddings, #metadatas=[{"source": str(i)} for i in range(len(all_texts))],
persist_directory=embed_path
)
docsearch.persist()
else:
docsearch = Chroma(embedding_function=embeddings, persist_directory=embed_path)
print ("Finished embedding documents")
return docsearch
def write_list(all_texts):
with open(params.pdf_text_path+'/pdf.txt', 'w') as file:
for text in all_texts:
file.write(text.page_content + '\n')
file.close()
"""
===========================
NER Functionality
===========================
"""
import spacy
nlp = spacy.load('en_core_web_lg')
def get_subject(doc): #Extract subject
for token in doc:
if ("subj" in token.dep_):
subtree = list(token.subtree)
start = subtree[0].i
end = subtree[-1].i + 1
return doc[start:end]
def get_object(doc): #Extract object
for token in doc:
if ("dobj" in token.dep_):
subtree = list(token.subtree)
start = subtree[0].i
end = subtree[-1].i + 1
return doc[start:end]
def extract_proper_nouns(doc): #Extract proper nouns
pos = [tok.i for tok in doc if tok.pos_ == "PROPN"]
consecutives = []
current = []
for elt in pos:
if len(current) == 0:
current.append(elt)
else:
if current[-1] == elt - 1:
current.append(elt)
else:
consecutives.append(current)
current = [elt]
if len(current) != 0:
consecutives.append(current)
return [doc[consecutive[0]:consecutive[-1]+1] for consecutive in consecutives]
def ner_hits(query): #Extract subject, object and NER strings
doc = nlp(query)
nouns = extract_proper_nouns(doc)
subject = get_subject(doc)
object = get_object(doc)
all_nouns = []
if nouns is not None:
nouns = [noun.text.strip() for noun in nouns] #Spacy object to string
for noun in nouns:
if len(noun)>params.min_NER_length: all_nouns.append(noun)
if subject is not None:
subject = subject.text.strip()
else : subject = ""
if object is not None:
object = object.text.strip()
else : object = ""
print("Subject:", subject)
print("Object:", object)
print("Proper Nouns", all_nouns)
uniques = list(set(all_nouns + [subject] + [object])) #Merge unique elements
print ("Merged NER list: ", uniques)
uniques = list(filter(lambda i: len(i) >= params.min_NER_length , uniques))
print ("Filtered NER list: ", uniques) #Only consider NERs > a set length
return uniques