forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Generator.cpp
186 lines (169 loc) · 6.74 KB
/
Generator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#include "Generator.h"
#include <structmember.h>
#include <ATen/ATen.h>
#include <stdbool.h>
#include <TH/TH.h>
#include "THP.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/autograd/python_variable.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/utils/tensor_types.h"
#include "torch/csrc/autograd/generated/variable_factories.h"
using namespace at;
using namespace torch;
PyObject *THPGeneratorClass = nullptr;
PyObject * THPGenerator_New()
{
PyObject *args = PyTuple_New(0);
if (!args) {
PyErr_SetString(PyExc_RuntimeError, "Could not create a new generator object - "
"failed to allocate argument tuple");
return nullptr;
}
PyObject *result = PyObject_Call((PyObject*)THPGeneratorClass, args, nullptr);
Py_DECREF(args);
return result;
}
PyObject * THPGenerator_NewWithGenerator(at::Generator& cdata)
{
auto type = (PyTypeObject*)THPGeneratorClass;
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
if (!self) throw python_error();
auto self_ = reinterpret_cast<THPGenerator*>(self.get());
self_->cdata = &cdata;
return self.release();
}
static void THPGenerator_dealloc(THPGenerator* self)
{
if (self->owner) {
delete self->cdata;
}
Py_TYPE(self)->tp_free((PyObject*)self);
}
static PyObject * THPGenerator_pynew(PyTypeObject *type, PyObject *args, PyObject *kwargs)
{
HANDLE_TH_ERRORS
if ((args && PyTuple_Size(args) != 0) || kwargs) {
THPUtils_setError("torch.Generator constructor doesn't accept any arguments");
return nullptr;
}
THPGeneratorPtr self((THPGenerator *)type->tp_alloc(type, 0));
// having to pick a specific type rather than just a backend here is strange,
// but we don't really have fully fledged backend objects.
self->cdata = at::CPU(at::kFloat).generator().release();
self->owner = true;
return (PyObject*)self.release();
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_getState(THPGenerator *self)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
THGenerator *generator = THPGenerator_TH_CData(self);
Variable var = torch::empty({0}, at::device(at::kCPU).dtype(at::kByte));
THByteTensor_getRNGState(generator, (THByteTensor*)(var.data().unsafeGetTensorImpl()));
return THPVariable_Wrap(std::move(var));
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_setState(THPGenerator *self, PyObject *_new_state)
{
using namespace torch::autograd;
HANDLE_TH_ERRORS
if (!THPVariable_Check(_new_state)) {
throw TypeError("expected a torch.ByteTensor, but got %s", Py_TYPE(_new_state)->tp_name);
}
auto& tensor = ((THPVariable*)_new_state)->cdata.data();
if (tensor.type() != CPU(kByte)) {
auto type_name = torch::utils::type_to_string(tensor.type());
throw TypeError("expected a torch.ByteTensor, but got %s", type_name.c_str());
}
THGenerator *generator = THPGenerator_TH_CData(self);
THByteTensor_setRNGState(generator, (THByteTensor*)tensor.unsafeGetTensorImpl());
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_manualSeed(THPGenerator *self, PyObject *seed)
{
HANDLE_TH_ERRORS
auto generator = self->cdata;
THPUtils_assert(THPUtils_checkLong(seed), "manual_seed expected a long, "
"but got %s", THPUtils_typename(seed));
generator->manualSeed(THPUtils_unpackLong(seed));
Py_INCREF(self);
return (PyObject*)self;
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_seed(THPGenerator *self)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(self->cdata->seed());
END_HANDLE_TH_ERRORS
}
static PyObject * THPGenerator_initialSeed(THPGenerator *self)
{
HANDLE_TH_ERRORS
return THPUtils_packUInt64(self->cdata->initialSeed());
END_HANDLE_TH_ERRORS
}
static PyMethodDef THPGenerator_methods[] = {
{"get_state", (PyCFunction)THPGenerator_getState, METH_NOARGS, nullptr},
{"set_state", (PyCFunction)THPGenerator_setState, METH_O, nullptr},
{"manual_seed", (PyCFunction)THPGenerator_manualSeed, METH_O, nullptr},
{"seed", (PyCFunction)THPGenerator_seed, METH_NOARGS, nullptr},
{"initial_seed", (PyCFunction)THPGenerator_initialSeed, METH_NOARGS, nullptr},
{nullptr}
};
static struct PyMemberDef THPGenerator_members[] = {
{(char*)"_cdata", T_ULONGLONG, offsetof(THPGenerator, cdata), READONLY, nullptr},
{nullptr}
};
PyTypeObject THPGeneratorType = {
PyVarObject_HEAD_INIT(nullptr, 0)
"torch._C.Generator", /* tp_name */
sizeof(THPGenerator), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)THPGenerator_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
nullptr, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
THPGenerator_methods, /* tp_methods */
THPGenerator_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
THPGenerator_pynew, /* tp_new */
};
bool THPGenerator_init(PyObject *module)
{
THPGeneratorClass = (PyObject*)&THPGeneratorType;
if (PyType_Ready(&THPGeneratorType) < 0)
return false;
Py_INCREF(&THPGeneratorType);
PyModule_AddObject(module, "Generator", (PyObject *)&THPGeneratorType);
return true;
}