forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_gradient_op.cc
147 lines (126 loc) · 4.74 KB
/
conv_gradient_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include "caffe2/operators/conv_op.h"
#include "caffe2/operators/conv_op_impl.h"
#include "caffe2/operators/conv_pool_op_base.h"
namespace caffe2 {
std::vector<TensorShape> TensorInferenceForConvGradient(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
CAFFE_ENFORCE_EQ(in.size(), 3, "ConvGradient requires 3 inputs");
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
ArgumentHelper helper(def);
const auto no_bias = helper.GetSingleArgument<int>("no_bias", 0);
const auto n_outputs = def.output_size();
vector<TensorShape> out(n_outputs);
// FILTER_GRAD has the same shape as FILTER
out[0] = in[1];
if (!no_bias) {
vector<int64_t> bias_shape = {in[1].dims(0)};
out[1] = CreateTensorShape(bias_shape, in[1].data_type());
}
if (n_outputs == 3 || (no_bias && n_outputs == 2)) {
// INPUT_GRAD has the same shape as INPUT
out[out.size() - 1] = in[0];
}
return out;
}
OpSchema::Cost CostInferenceForConvGradient(
const OperatorDef& def,
const vector<TensorShape>& inputs) {
CAFFE_ENFORCE_EQ(inputs.size(), 3, "ConvGradient requires 3 inputs");
ArgumentHelper helper(def);
const auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
const auto no_bias = helper.GetSingleArgument<int>("no_bias", 0);
const auto n_outputs = def.output_size();
const auto& outputs = TensorInferenceForConvGradient(def, inputs);
const auto& X = inputs[0];
const auto& filter = inputs[1];
const auto& dY = inputs[2];
const auto N = X.dims(0);
const auto M = filter.dims(0);
const auto C =
(order == StorageOrder::NCHW ? X.dims(1) : X.dims(X.dims_size() - 1));
const auto output_image_size =
(order == StorageOrder::NCHW
? nElemFromDim(dY, 2)
: nElemBetweenDim(dY, 1, dY.dims_size() - 1));
auto kernel_elem =
(order == StorageOrder::NCHW
? nElemFromDim(filter, 2)
: nElemBetweenDim(filter, 1, filter.dims_size() - 1));
struct OpSchema::Cost c;
c.flops = N * 2 * M * kernel_elem * C * output_image_size;
if (!no_bias) {
c.flops += N * (M * output_image_size);
}
if (n_outputs == 3 || (no_bias && n_outputs == 2)) {
c.flops += N * 2 * M * kernel_elem * C * output_image_size;
}
c.bytes_read = (nElemFromDim(X) + nElemFromDim(filter) + nElemFromDim(dY)) *
sizeof(float);
for (auto i = 0; i < n_outputs; i++) {
c.bytes_written += nElemFromDim(outputs[i]) * sizeof(float);
}
c.params_bytes = nElemFromDim(filter) * sizeof(float);
return c;
}
REGISTER_CPU_OPERATOR(ConvGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(ConvGradient)
.NumInputs(2, 3)
.NumOutputs(1, 3)
.TensorInferenceFunction(TensorInferenceForConvGradient)
.CostInferenceFunction(CostInferenceForConvGradient);
REGISTER_CPU_OPERATOR(Conv1DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv1DGradient).NumInputs(2, 3).NumOutputs(1, 3);
REGISTER_CPU_OPERATOR(Conv2DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv2DGradient).NumInputs(2, 3).NumOutputs(1, 3);
REGISTER_CPU_OPERATOR(Conv3DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv3DGradient).NumInputs(2, 3).NumOutputs(1, 3);
class GetConvGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE(def_.input_size() == 3 || def_.input_size() == 2);
ArgumentHelper argsHelper(def_);
auto compute_dX = !argsHelper.GetSingleArgument<bool>("no_gradient_to_input", 0);
if (def_.input_size() == 3) {
if (compute_dX) {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(2), GI(0)});
} else {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(2)});
}
} else {
if (compute_dX) {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(0)},
vector<Argument>{MakeArgument<int>("no_bias", 1)});
} else {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("no_bias", 1)});
}
}
}
};
REGISTER_GRADIENT(Conv, GetConvGradient);
REGISTER_GRADIENT(Conv1D, GetConvGradient);
REGISTER_GRADIENT(Conv2D, GetConvGradient);
REGISTER_GRADIENT(Conv3D, GetConvGradient);
} // namespace caffe2