forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
THCReduce.cuh
640 lines (572 loc) · 23.6 KB
/
THCReduce.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#ifndef THC_REDUCE_INC
#define THC_REDUCE_INC
//
// This file contains dimension reduction operation functions and
// kernels that work on both contiguous and non-contiguous tensor
// arguments of arbitrary (up to MAX_CUTORCH_DIMS) dimensioned
// arguments without copying or temporary storage.
//
#include "THCTensorTypeUtils.cuh"
#include "THCReduceApplyUtils.cuh"
#include "THCNumerics.cuh"
// Threads per thread block
#define THC_NONCONTIG_REDUCE_BLOCK_SIZE 32 * 16
#define CHUNKPERBLOCK 256
template <typename IndexType>
__device__ __forceinline__ IndexType getReduceNoncontigDimSliceIndex() {
// Each thread handles one slice
return getLinearBlockId<IndexType>() * THC_NONCONTIG_REDUCE_BLOCK_SIZE + threadIdx.x;
}
// quick hack to enable two-stage use of reduceChunk
template <typename T>
struct SimpleCopyOp
{
__device__ __forceinline__ T operator()(const T val) const
{
return val;
}
};
__device__ __forceinline__ int lastpow2(int n)
{
int out = 1 << (31 - __clz(n));
if(n == out)
out >>= 1;
return out;
}
template
<typename T,
typename U,
typename IndexType,
typename AccT,
typename ModifyOp,
typename ReduceOp,
typename FinalizeOp>
__device__ __forceinline__ void reduceChunk
(T* out,
U* in,
const int& inbounds,
const IndexType& reductionStride,
const IndexType& reductionSize,
const IndexType& inOffset,
const IndexType& outOffset,
const int& shmem_lim,
AccT init,
AccT* shmem,
ModifyOp modifyOp,
ReduceOp reduceOp,
FinalizeOp finalizeOp)
{
AccT load_reg[4];
AccT local_reg = init;
//Unroll this loop
//for(IndexType i=threadIdx.y; i<reductionSize; i+=blockDim.y){
// local_reg += in[inOffset + i*reductionStride];
//}
if(inbounds)
for(IndexType i = threadIdx.y; i < reductionSize; i += blockDim.y*4)
{
if (i + blockDim.y*3 < reductionSize)
{
const AccT val0 = scalar_cast<AccT>(in[inOffset + i*reductionStride]);
load_reg[0] = modifyOp(val0);
const AccT val1 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y)*reductionStride]);
load_reg[1] = modifyOp(val1);
const AccT val2 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y*2)*reductionStride]);
load_reg[2] = modifyOp(val2);
const AccT val3 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y*3)*reductionStride]);
load_reg[3] = modifyOp(val3);
local_reg = reduceOp(local_reg, load_reg[0]);
local_reg = reduceOp(local_reg, load_reg[1]);
local_reg = reduceOp(local_reg, load_reg[2]);
local_reg = reduceOp(local_reg, load_reg[3]);
}
else if (i + blockDim.y*2 < reductionSize)
{
const AccT val0 = scalar_cast<AccT>(in[inOffset + i*reductionStride]);
load_reg[0] = modifyOp(val0);
const AccT val1 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y)*reductionStride]);
load_reg[1] = modifyOp(val1);
const AccT val2 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y*2)*reductionStride]);
load_reg[2] = modifyOp(val2);
local_reg = reduceOp(local_reg, load_reg[0]);
local_reg = reduceOp(local_reg, load_reg[1]);
local_reg = reduceOp(local_reg, load_reg[2]);
}
else if (i + blockDim.y < reductionSize)
{
const AccT val0 = scalar_cast<AccT>(in[inOffset + i*reductionStride]);
load_reg[0] = modifyOp(val0);
const AccT val1 = scalar_cast<AccT>(in[inOffset + (i + blockDim.y)*reductionStride]);
load_reg[1] = modifyOp(val1);
local_reg = reduceOp(local_reg, load_reg[0]);
local_reg = reduceOp(local_reg, load_reg[1]);
}
else if (i < reductionSize)
{
const AccT val0 = scalar_cast<AccT>(in[inOffset + i*reductionStride]);
local_reg = reduceOp(local_reg, modifyOp(val0));
}
}
*shmem = local_reg;
for(int i = lastpow2(shmem_lim); i > 0; i >>= 1)
{
__syncthreads();
if(threadIdx.y < i && threadIdx.y + i < shmem_lim)
*shmem = reduceOp(*shmem, *(shmem + i*blockDim.x));
}
if(threadIdx.y == 0 && inbounds)
out[outOffset] = scalar_cast<T>(finalizeOp(*shmem));
}
// Kernel that handles an entire reduction of a slice of a tensor per each thread
template
<typename T,
typename IndexType,
typename AccT,
typename ModifyOp,
typename ReduceOp,
typename FinalizeOp,
int ADims, int BDims>
#if __CUDA_ARCH__ >= 350
__launch_bounds__(32 * 16, 4)
#endif
__global__ void kernelReduceNoncontigDim_shared
(TensorInfo<T, IndexType> out,
TensorInfo<T, IndexType> in,
IndexType reductionStride,
IndexType reductionSize,
IndexType totalSlices,
AccT init,
ModifyOp modifyOp,
ReduceOp reduceOp,
FinalizeOp finalizeOp,
volatile AccT* stagingData,
int* semaphores)
{
IndexType sliceIndex = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ int isLastBlockDone;
__shared__ AccT local_reduce[THC_NONCONTIG_REDUCE_BLOCK_SIZE];
AccT* shmem = &local_reduce[threadIdx.x + threadIdx.y*blockDim.x];
// This kernel is intended for the latency-bound case, so we want to launch enough blocks
// to cover the entire output. This means we don't need grid-stride loops.
const IndexType outOffset =
IndexToOffset<T, IndexType, ADims>::get(sliceIndex, out);
const IndexType inOffset =
IndexToOffset<T, IndexType, BDims>::get(sliceIndex, in);
const int inbounds = (sliceIndex < totalSlices);
if(gridDim.y == 1)
reduceChunk
(out.data,
in.data,
inbounds,
reductionStride,
reductionSize,
inOffset,
outOffset,
reductionSize < blockDim.y ? reductionSize : blockDim.y,
init,
shmem,
modifyOp,
reduceOp,
finalizeOp);
else
{
int* semaphore = semaphores + blockIdx.x;
const IndexType chunkStart = blockIdx.y*CHUNKPERBLOCK;
const IndexType chunkSize = reductionSize - chunkStart < CHUNKPERBLOCK ?
reductionSize - chunkStart : CHUNKPERBLOCK;
const IndexType reductionStrideStaging = totalSlices;
const IndexType stagingOffset = sliceIndex;
reduceChunk
(stagingData,
in.data,
inbounds,
reductionStride,
chunkSize,
inOffset + chunkStart*reductionStride,
stagingOffset + blockIdx.y*reductionStrideStaging,
chunkSize < blockDim.y ? chunkSize : blockDim.y,
init,
shmem,
modifyOp,
reduceOp,
SimpleCopyOp<AccT>());
__threadfence(); // make sure writes are globally visible
__syncthreads(); // if multiple warps in this block wrote to staging, make sure they're all done
if(threadIdx.x == 0 && threadIdx.y == 0)
{
int old = atomicAdd(semaphore, 1);
isLastBlockDone = (old == gridDim.y - 1);
}
__syncthreads();
// The staging area contains gridDim.y elements along each slice. The final reduction
// begins by treating the first blockDim.y elements as "init" values.
if(isLastBlockDone)
{
if(threadIdx.y < gridDim.y)
init = stagingData[stagingOffset + threadIdx.y*reductionStrideStaging];
IndexType remaining = gridDim.y < blockDim.y ? 0 : gridDim.y - blockDim.y;
reduceChunk
(out.data,
stagingData,
inbounds,
reductionStrideStaging,
remaining, // if 0, loop in reduceChunk is skipped, otherwise...
stagingOffset + blockDim.y*reductionStrideStaging, // ...loop begins at blockDim+1th element
outOffset,
gridDim.y < blockDim.y ? gridDim.y : blockDim.y,
init,
shmem,
SimpleCopyOp<AccT>(),
reduceOp,
finalizeOp);
}
}
}
// Kernel that handles an entire reduction of a slice of a tensor per each thread
template <typename T,
typename IndexType,
typename AccT,
typename ModifyOp,
typename ReduceOp,
typename FinalizeOp,
int ADims, int BDims>
#if __CUDA_ARCH__ >= 350
__launch_bounds__(32 * 16, 4)
#endif
__global__ void
kernelReduceNoncontigDim(TensorInfo<T, IndexType> out,
TensorInfo<T, IndexType> in,
IndexType reductionStride,
IndexType reductionSize,
IndexType totalSlices,
AccT init,
ModifyOp modifyOp,
ReduceOp reduceOp,
FinalizeOp finalizeOp) {
const IndexType sliceIndex = getReduceNoncontigDimSliceIndex<IndexType>();
if (sliceIndex >= totalSlices) {
return;
}
// Each thread picks a point in `out` and `in` for which it is
// producing the reduction
const IndexType outOffset =
IndexToOffset<T, IndexType, ADims>::get(sliceIndex, out);
const IndexType inBaseOffset =
IndexToOffset<T, IndexType, BDims>::get(sliceIndex, in);
// For each point in reductionSize, reduce into `r`
IndexType inOffset = inBaseOffset;
AccT r = init;
for (IndexType i = 0; i < reductionSize; ++i) {
const AccT val = scalar_cast<AccT>(in.data[inOffset]);
r = reduceOp(r, modifyOp(val));
inOffset += reductionStride;
}
// Write out reduced value
out.data[outOffset] = scalar_cast<T>(finalizeOp(r));
}
template <typename IndexType>
__device__ __forceinline__ IndexType getReduceContigDimSliceIndex() {
// Each block handles one slice
return getLinearBlockId<IndexType>();
}
// Kernel that handles an entire reduction of a slice of a tensor per
// each block
template <typename T,
typename IndexType,
typename AccT,
typename ModifyOp,
typename ReduceOp,
typename FinalizeOp,
int ADims, int BDims>
__global__ void
kernelReduceContigDim(TensorInfo<T, IndexType> out,
TensorInfo<T, IndexType> in,
IndexType reductionSize,
IndexType totalSlices,
AccT init,
ModifyOp modifyOp,
ReduceOp reduceOp,
FinalizeOp finalizeOp) {
const IndexType sliceIndex = getReduceContigDimSliceIndex<IndexType>();
if (sliceIndex >= totalSlices) {
return;
}
// Get the offset in `out` for the reduction
const IndexType outOffset =
IndexToOffset<T, IndexType, ADims>::get(sliceIndex, out);
// Get the base offset in `in` for this block's reduction
const IndexType inBaseOffset =
IndexToOffset<T, IndexType, BDims>::get(sliceIndex, in);
// Each thread in the block will reduce some subset of elements in
// the slice. The elements are guaranteed contiguous starting at
// `inBaseOffset`.
AccT r = init;
for (IndexType i = threadIdx.x; i < reductionSize; i += blockDim.x) {
const AccT val = scalar_cast<AccT>(in.data[inBaseOffset + i]);
r = reduceOp(r, modifyOp(val));
}
// Reduce within the block
// FIXME: extern name
extern __shared__ char smemChar[];
AccT* smem = (AccT*) smemChar;
r = reduceBlock<AccT, ReduceOp>(smem, blockDim.x, r, reduceOp, init);
if (threadIdx.x == 0) {
// Write out reduced value
out.data[outOffset] = scalar_cast<T>(finalizeOp(r));
}
}
inline dim3 getNoncontigReduceBlock() {
return dim3(THC_NONCONTIG_REDUCE_BLOCK_SIZE);
}
inline dim3 getContigReduceBlock(ptrdiff_t numSlices, int64_t reductionSize) {
// If the number of slices is low but the reduction dimension size
// is high, then we should increase block size for greater parallelism.
// Aim for at least 32 warps per SM (assume 15 SMs; don't bother
// inquiring the real number for now).
int maxWarps = 4; // better occupancy if many blocks are around
// For numSlices > 15 * 8, there are > 32 warps active per SM.
if (numSlices < 15 * 8) {
maxWarps = 8;
if (numSlices < 15 * 4) {
maxWarps = 16;
if (numSlices < 15 * 2) {
maxWarps = 32;
}
}
}
// Scale up block size based on the reduction dimension size
int64_t warpsInReductionSize = THCCeilDiv(reductionSize, (int64_t) 32);
int numWarps = warpsInReductionSize > (int64_t) maxWarps ?
maxWarps : (int) warpsInReductionSize;
return dim3(numWarps * 32);
}
inline bool getNoncontigReduceGrid(ptrdiff_t elements, dim3& grid) {
// One output point per thread
return THC_getGridFromTiles(THCCeilDiv(elements,
(ptrdiff_t) THC_NONCONTIG_REDUCE_BLOCK_SIZE), grid);
}
inline bool getContigReduceGrid(ptrdiff_t elements, dim3& grid) {
// One output point per block
return THC_getGridFromTiles(elements, grid);
}
// Performs a reduction out[..., 0, ...] = reduce_i(modify(in[..., i, ...])) for
// all in where i and the out's 0 are indexed at dimension `dim`
template <typename ScalarType,
typename TensorType,
typename ModifyOp,
typename ReduceOp,
typename FinalizeOp,
typename AccT>
bool THC_reduceDim(THCState* state,
TensorType* out,
TensorType* in,
const ModifyOp modifyOp,
const ReduceOp reduceOp,
const FinalizeOp finalizeOp,
AccT init,
int dim,
int keepdim) {
ptrdiff_t inElements = THCTensor_nElement(state, in);
int64_t reductionSize = THTensor_sizeLegacyNoScalars(in, dim);
int64_t reductionStride = THTensor_strideLegacyNoScalars(in, dim);
ptrdiff_t outElements = inElements / reductionSize;
if (THCTensor_nDimensionLegacyAll(state, out) > MAX_CUTORCH_DIMS ||
THCTensor_nDimensionLegacyAll(state, in) > MAX_CUTORCH_DIMS) {
return false;
}
if (THCTensor_nDimensionLegacyAll(state, in) == 0) {
// Zero-dim tensor; do nothing
return true;
}
// Is the reduction dimension contiguous? If so, then we can use a
// shared memory reduction kernel to increase performance.
bool contigReduction = (reductionStride == 1);
dim3 block;
dim3 grid;
int smemSize = 0; // contiguous reduction uses smem
if (contigReduction) {
if (!getContigReduceGrid(outElements, grid)) {
return false;
}
block = getContigReduceBlock(outElements, reductionSize);
smemSize = sizeof(AccT) * block.x;
} else {
if (!getNoncontigReduceGrid(outElements, grid)) {
return false;
}
block = getNoncontigReduceBlock();
if(outElements <= 4096)
{
// gridDim.x and blockDim.x parallelize work across slices.
// blockDim.y enables some intra-block reduction within slices.
// gridDim.y enables inter-block reduction within slices.
// Each block covers 32 output elements.
int blockdimx = 32;
int griddimx = THCCeilDiv((int64_t)outElements, (int64_t)blockdimx);
// Each warp reduces at most 4 slices. This heuristic can be tuned,
// but locking blockdimy to 16 is robust and reasonably performant.
int blockdimy = 16;
int griddimy = 1;
bool coop = false;
// Rough heuristics to decide if using cooperating blocks is worthwhile
if( outElements <= 32 && reductionSize >= 4096) coop = true;
if( 32 < outElements && outElements <= 64 && reductionSize >= 4096) coop = true;
if( 64 < outElements && outElements <= 128 && reductionSize >= 4096) coop = true;
if( 128 < outElements && outElements <= 256 && reductionSize >= 4096) coop = true;
if( 256 < outElements && outElements <= 512 && reductionSize >= 4096) coop = true;
if( 512 < outElements && outElements <= 1024 && reductionSize >= 4096) coop = true;
if(1024 < outElements && outElements <= 2048 && reductionSize >= 2048) coop = true;
if(2048 < outElements && outElements <= 4096 && reductionSize >= 2048) coop = true;
// Each block reduces at most CHUNKPERBLOCK (currently 256) slices.
if(coop)
griddimy = THCCeilDiv((int64_t)reductionSize, (int64_t)CHUNKPERBLOCK);
grid = dim3(griddimx, griddimy, 1);
block = dim3(blockdimx, blockdimy, 1);
}
}
// Resize out to correspond to the reduced size with keepdim=True.
// Preserve noncontiguities by unsqueezing out if necessary
THCTensor_preserveReduceDimSemantics(
state, out, THCTensor_nDimensionLegacyAll(state, in), dim, keepdim);
// Resize out
std::vector<int64_t> sizes = THTensor_sizesLegacyNoScalars(in);
sizes[dim] = 1;
THCTensor_resize(state, out, sizes, {});
// It is possible that the tensor dimensions are able to be collapsed,
// and thus we can reduce the actual code complexity of the copy by
// exploiting this knowledge statically, since the div/mod is the
// most expensive part of the operation, more so than memory accesses.
// For instance, when copying a non-contiguous to a contiguous tensor
// (or vice versa), the contiguous tensor can be collapsed to one
// dimension, and the loop to translate the linear index to the array
// index can be similarly collapsed. That is what this unrolling is for.
#define HANDLE_CASE(TYPE, OUT, IN) \
if (contigReduction) { \
kernelReduceContigDim<ScalarType, \
TYPE, AccT, ModifyOp, ReduceOp, FinalizeOp, \
OUT, IN> \
<<<grid, block, smemSize, THCState_getCurrentStream(state)>>> \
(outInfo, inInfo, reductionSize, \
(TYPE) outElements, init, modifyOp, reduceOp, finalizeOp); \
} else { \
if(block.y == 1){ \
kernelReduceNoncontigDim< \
ScalarType, \
TYPE, AccT, ModifyOp, ReduceOp, FinalizeOp, \
OUT, IN> \
<<<grid, block, 0, THCState_getCurrentStream(state)>>> \
(outInfo, inInfo, reductionStride, reductionSize, \
(TYPE) outElements, init, modifyOp, reduceOp, finalizeOp); \
} \
else \
{ \
void* stagingData = nullptr; \
void* semaphores = nullptr; \
\
if(grid.y > 1) \
{ \
stagingData = THCudaMalloc(state, sizeof(AccT)*outElements*grid.y);\
semaphores = THCudaMalloc(state, sizeof(int)*grid.x); \
THCudaCheck(cudaMemsetAsync \
(semaphores, \
0, \
sizeof(int)*grid.x, \
THCState_getCurrentStream(state))); \
} \
\
kernelReduceNoncontigDim_shared \
<ScalarType, TYPE, AccT, ModifyOp, ReduceOp, FinalizeOp, OUT, IN> \
<<<grid, block, 0, THCState_getCurrentStream(state)>>> \
(outInfo, \
inInfo, \
reductionStride, \
reductionSize, \
(TYPE) outElements, \
init, \
modifyOp, \
reduceOp, \
finalizeOp, \
(volatile AccT*)stagingData, \
(int*)semaphores); \
\
if(grid.y > 1) \
{ \
THCudaFree(state, stagingData); \
THCudaFree(state, semaphores); \
} \
} \
}
#define HANDLE_IN_CASE(TYPE, OUT, IN) \
{ \
switch (IN) { \
case 1: \
HANDLE_CASE(TYPE, OUT, 1); \
break; \
case 2: \
HANDLE_CASE(TYPE, OUT, 2); \
break; \
default: \
HANDLE_CASE(TYPE, OUT, -1); \
break; \
} \
}
#define HANDLE_OUT_CASE(TYPE, OUT, IN) \
{ \
switch (OUT) { \
case 1: \
HANDLE_IN_CASE(TYPE, 1, IN); \
break; \
case 2: \
HANDLE_IN_CASE(TYPE, 2, IN); \
break; \
default: \
HANDLE_IN_CASE(TYPE, -1, IN); \
break; \
} \
}
if(THCTensor_canUse32BitIndexMath(state, out) &&
THCTensor_canUse32BitIndexMath(state, in))
{
TensorInfo<ScalarType,
unsigned int> outInfo =
getTensorInfo<ScalarType, TensorType, unsigned int>(state, out);
outInfo.collapseDims();
TensorInfo<ScalarType,
unsigned int> inInfo =
getTensorInfo<ScalarType, TensorType, unsigned int>(state, in);
inInfo.reduceDim(dim);
inInfo.collapseDims();
HANDLE_OUT_CASE(unsigned int, outInfo.dims, inInfo.dims);
}
else
{
TensorInfo<ScalarType,
uint64_t> outInfo =
getTensorInfo<ScalarType, TensorType, uint64_t>(state, out);
outInfo.collapseDims();
TensorInfo<ScalarType,
uint64_t> inInfo =
getTensorInfo<ScalarType, TensorType, uint64_t>(state, in);
inInfo.reduceDim(dim);
inInfo.collapseDims();
/*
Only instantiates the all 1D special case and the fallback all nD case for
large (64-bit indexed) tensors to reduce compilation time.
*/
if (outInfo.dims == 1 && inInfo.dims == 1) {
HANDLE_CASE(uint64_t, 1, 1);
} else {
HANDLE_CASE(uint64_t, -1, -1);
}
}
#undef HANDLE_CASE
#undef HANDLE_IN_CASE
#undef HANDLE_OUT_CASE
if (!keepdim) {
THCTensor_squeeze1d(state, out, out, dim);
}
return true;
}
#undef THC_NONCONTIG_REDUCE_BLOCK_SIZE
#undef CHUNKPERBLOCK
#endif // THC_REDUCE_INC