forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.yaml
266 lines (207 loc) · 9.36 KB
/
nn.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# Loss functions
- name: binary_cross_entropy(Tensor self, Tensor target, Tensor weight={}, int64_t reduction=Reduction::Mean)
cname: BCECriterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
- name: l1_loss(Tensor self, Tensor target, int64_t reduction=Reduction::Mean)
cname: AbsCriterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
- name: mse_loss(Tensor self, Tensor target, int64_t reduction=Reduction::Mean)
cname: MSECriterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
- name: multi_margin_loss(Tensor self, LongTensor target, Scalar p=1, Scalar margin=1, Tensor weight={}, int64_t reduction=Reduction::Mean)
cname: MultiMarginCriterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
- name: multilabel_margin_loss(Tensor self, LongTensor target, int64_t reduction=Reduction::Mean)
cname: MultiLabelMarginCriterion
buffers: [is_target]
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
is_target: target_->dim() == 0
- name: nll_loss(Tensor self, LongTensor target, Tensor weight={}, int64_t reduction=Reduction::Mean, int64_t ignore_index=-100)
cname: ClassNLLCriterion
buffers: [total_weight]
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
total_weight: 'true'
- name: nll_loss2d(Tensor self, LongTensor target, Tensor weight={}, int64_t reduction=Reduction::Mean, int64_t ignore_index=-100)
cname: SpatialClassNLLCriterion
buffers: [total_weight]
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
total_weight: 'true'
- name: smooth_l1_loss(Tensor self, Tensor target, int64_t reduction=Reduction::Mean)
cname: SmoothL1Criterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
- name: soft_margin_loss(Tensor self, Tensor target, int64_t reduction=Reduction::Mean)
cname: SoftMarginCriterion
scalar_check:
output: reduction != Reduction::None || self_->dim() == 0
# Activation functions
- name: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1)
cname: ELU
has_inplace: True
scalar_check:
output: self_->dim() == 0
grad_input: output_->dim() == 0
- name: glu(Tensor self, int64_t dim=-1)
cname: GatedLinear
wrap_dim:
dim: self
scalar_check:
output: 'false'
- name: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1)
cname: HardTanh
has_inplace: True
scalar_check:
output: self_->dim() == 0
- name: leaky_relu(Tensor self, Scalar negative_slope=0.01)
cname: LeakyReLU
has_inplace: True
scalar_check:
output: self_->dim() == 0
- name: log_sigmoid(Tensor self)
cname: LogSigmoid
buffers: [buffer]
scalar_check:
output: self_->dim() == 0
buffer: self_->dim() == 0
# NOTE: we treat noise as an input (it's really a buffer) because the codegen
# can't handle in-place functions that have buffers
- name: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=false, Generator* generator=nullptr)
cname: RReLU
has_inplace: True
scalar_check:
output: self_->dim() == 0
- name: softplus(Tensor self, Scalar beta=1, Scalar threshold=20)
cname: SoftPlus
scalar_check:
output: self_->dim() == 0
- name: softshrink(Tensor self, Scalar lambd=0.5)
cname: SoftShrink
scalar_check:
output: self_->dim() == 0
- name: threshold(Tensor self, Scalar threshold, Scalar value)
cname: Threshold
has_inplace: True
scalar_check:
output: self_->dim() == 0
# Pooling
- name: adaptive_avg_pool2d(Tensor self, IntList[2] output_size)
cname: SpatialAdaptiveAveragePooling
- name: adaptive_avg_pool3d(Tensor self, IntList[3] output_size)
cname: VolumetricAdaptiveAveragePooling
- name: adaptive_max_pool2d(Tensor self, IntList[2] output_size)
cname: SpatialAdaptiveMaxPooling
- name: adaptive_max_pool3d(Tensor self, IntList[3] output_size)
cname: VolumetricAdaptiveMaxPooling
- name: avg_pool2d(Tensor self, IntList[2] kernel_size, IntList[2] stride={}, IntList[2] padding=0, bool ceil_mode=false, bool count_include_pad=true)
cname: SpatialAveragePooling
default_init:
stride: kernel_size
- name: avg_pool3d(Tensor self, IntList[3] kernel_size, IntList[3] stride={}, IntList[3] padding=0, bool ceil_mode=false, bool count_include_pad=true)
cname: VolumetricAveragePooling
default_init:
stride: kernel_size
- name: fractional_max_pool2d(Tensor self, IntList[2] kernel_size, IntList[2] output_size, Tensor random_samples)
cname: SpatialFractionalMaxPooling
scalar_check:
output: 'false'
- name: max_pool2d_with_indices(Tensor self, IntList[2] kernel_size, IntList[2] stride={}, IntList[2] padding=0, IntList[2] dilation=1, bool ceil_mode=false)
cname: SpatialDilatedMaxPooling
default_init:
stride: kernel_size
- name: max_pool3d_with_indices(Tensor self, IntList[3] kernel_size, IntList[3] stride={}, IntList[3] padding=0, IntList[3] dilation=1, bool ceil_mode=false)
cname: VolumetricDilatedMaxPooling
default_init:
stride: kernel_size
- name: max_unpool2d(Tensor self, LongTensor indices, IntList[2] output_size)
cname: SpatialMaxUnpooling
- name: max_unpool3d(Tensor self, LongTensor indices, IntList[3] output_size, IntList[3] stride, IntList[3] padding)
cname: VolumetricMaxUnpooling
# Padding
- name: reflection_pad1d(Tensor self, IntList[2] padding)
cname: TemporalReflectionPadding
- name: reflection_pad2d(Tensor self, IntList[4] padding)
cname: SpatialReflectionPadding
- name: replication_pad1d(Tensor self, IntList[2] padding)
cname: TemporalReplicationPadding
- name: replication_pad2d(Tensor self, IntList[4] padding)
cname: SpatialReplicationPadding
- name: replication_pad3d(Tensor self, IntList[6] padding)
cname: VolumetricReplicationPadding
# Upsampling
# Note: The upsampling backwards functions also include an IntList input_size
# parameter, which is added by nn_parse.py
- name: upsample_linear1d(Tensor self, IntList[1] output_size, bool align_corners)
cname: TemporalUpSamplingLinear
scalar_check:
grad_input: 'false'
- name: upsample_bilinear2d(Tensor self, IntList[2] output_size, bool align_corners)
cname: SpatialUpSamplingBilinear
scalar_check:
grad_input: 'false'
- name: upsample_trilinear3d(Tensor self, IntList[3] output_size, bool align_corners)
cname: VolumetricUpSamplingTrilinear
scalar_check:
grad_input: 'false'
- name: upsample_nearest1d(Tensor self, IntList[1] output_size)
cname: TemporalUpSamplingNearest
scalar_check:
grad_input: 'false'
- name: upsample_nearest2d(Tensor self, IntList[2] output_size)
cname: SpatialUpSamplingNearest
scalar_check:
grad_input: 'false'
- name: upsample_nearest3d(Tensor self, IntList[3] output_size)
cname: VolumetricUpSamplingNearest
scalar_check:
grad_input: 'false'
# Private functions. These also exist in TH, but we want the backwards functions
# to implement derivatives.
- name: _sigmoid(Tensor self)
cname: Sigmoid
scalar_check:
output: self_->dim() == 0
grad_input: output_->dim() == 0
- name: _tanh(Tensor self)
cname: Tanh
scalar_check:
output: self_->dim() == 0
grad_input: output_->dim() == 0
# Batch normalization
# The buffers here are somewhat hazardous, because their type will be
# based off of self, even though you may plausibly wish running_mean
# and running_var to have different precision than self (e.g.,
# BatchNorm on half). Fortunately, THNN doesn't actually ever do this,
# so the buffer allocation code is "correct". If you ever do fix this,
# you should just port the function entirely to a native ATen function.
- name: thnn_batch_norm(Tensor self, Tensor weight, Tensor bias, Tensor running_mean, Tensor running_var, bool training, double momentum, double eps)
cname: BatchNormalization
buffers: [save_mean, save_std]
# Convolutions
- name: thnn_conv_transpose2d(Tensor self, Tensor weight, IntList[2] kernel_size, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0, IntList[2] output_padding=0, IntList[2] dilation=1)
cname: SpatialFullDilatedConvolution
buffers: [columns, ones]
- name: thnn_conv_transpose3d(Tensor self, Tensor weight, IntList[3] kernel_size, Tensor bias={}, IntList[3] stride=1, IntList[3] padding=0, IntList[3] output_padding=0, IntList[3] dilation=1)
cname: VolumetricFullDilatedConvolution
buffers: [finput, fgrad_input]
- name: thnn_conv2d(Tensor self, Tensor weight, IntList[2] kernel_size, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0)
cname: SpatialConvolutionMM
buffers: [finput, fgrad_input]
- name: thnn_conv_depthwise2d(Tensor self, Tensor weight, IntList[2] kernel_size, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0, IntList[2] dilation=1)
cname: SpatialDepthwiseConvolution
buffers: []
- name: thnn_conv3d(Tensor self, Tensor weight, IntList[3] kernel_size, Tensor bias={}, IntList[3] stride=1, IntList[3] padding=0)
cname: VolumetricConvolutionMM
buffers: [finput, fgrad_input]
- name: thnn_conv_dilated2d(Tensor self, Tensor weight, IntList[2] kernel_size, Tensor bias={}, IntList[2] stride=1, IntList[2] padding=0, IntList[2] dilation=1)
cname: SpatialDilatedConvolution
buffers: [columns, ones]
- name: thnn_conv_dilated3d(Tensor self, Tensor weight, IntList[3] kernel_size, Tensor bias={}, IntList[3] stride=1, IntList[3] padding=0, IntList[3] dilation=1)
cname: VolumetricDilatedConvolution
buffers: [columns, ones]