-
Notifications
You must be signed in to change notification settings - Fork 9
/
base.yaml
88 lines (78 loc) · 1.83 KB
/
base.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
TRAINING:
print_freq: 100
label_smoothing: 0.1
num_updates: 75000
ckpt_path: 'checkpoints'
seed: 2021
visdom_port: 0
eval_freq: 500
loss: 'xent'
focal_gamma: 3
debug: False
AUGMENTATIONS:
beta: 1.0
cutmix_prob: 1.0
augmentation: 'none'
MODEL:
load_from_timm: False
arch: 'resnet18'
OPTIM:
gamma: 0.1
lr: 0.1
lr_stepsize: 30
nesterov: False
weight_decay: 0.0001
optimizer_name: 'SGD'
scheduler: 'multi_step'
DATA:
# Data config
image_size: 126
base_source: 'ilsvrc_2012'
val_source: 'ilsvrc_2012'
test_source: 'ilsvrc_2012'
batch_size: 256
split: 'train'
num_workers: 6
train_transforms: ['resize', 'to_tensor', 'normalize', 'gaussian', 'jitter']
test_transforms: ['resize', 'center_crop', 'to_tensor', 'normalize']
gaussian_noise_std: 0.
jitter_amount: 0
num_unique_descriptions: 0
shuffle: True
loader_version: 'pytorch'
EVAL-GENERAL:
eval_metrics: ['Acc']
plot_freq: 10
model_tag: 'best'
eval_mode: 'test'
val_episodes: 100
val_batch_size: 1
iter: 1
extract_batch_size: 10 # set to >0 to batch feature extraction (save memory) at inference
center_features: False
EVAL-VISU:
res_path: 'results/'
max_s_visu: 2
max_q_visu: 3
max_class_visu: 5
visu: False
visu_freq: 10
EVAL-EPISODES:
num_ways: 10
num_support: 10
num_query: 15
min_ways: 5
max_ways_upper_bound: 50
max_num_query: 10
max_support_set_size: 500
max_support_size_contrib_per_class: 100
min_log_weight: -0.69314718055994529
max_log_weight: 0.69314718055994529
ignore_dag_ontology: False
ignore_bilevel_ontology: False
ignore_hierarchy_probability: 0
min_examples_in_class: 0
METHOD:
episodic_training: False
DISTRIBUTED:
gpus: [0]