-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathWebScraper.py
598 lines (501 loc) · 28.1 KB
/
WebScraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
from bs4 import BeautifulSoup
from requests import get
from requests.exceptions import RequestException
from contextlib import closing
import json
import base64
import time
import re
import pandas as pd
from collections import OrderedDict, defaultdict
from openpyxl import load_workbook
import argparse
import demjson
class OrderedDefaultDict(OrderedDict):
def __missing__(self, key):
value = list()
self[key] = value
return value
def get_page(url):
time.sleep(3)
try:
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:64.0) Gecko/20100101 Firefox/64.0'
}
vid = 'vid'
uid = 'uid'
data = 'response'
response = json.dumps({'r': data, 'v': vid, 'u': uid})
response = base64.b64encode(response.encode('utf-8'))
cookies = {'_pxCaptcha': 'eyJyIjoiMDNBRjZqRHFXWnpXTWVldVdQUXlWcGZhYVZPaTBna1NqSTl1UWN4U3BwYmM2NU9HVVhPSWRPSkV5UUUxT2IwZlY5ZlU5MHo2VVNmeTl4RzUwMkQxSHQwVW5ib1FFeVdoSFRITDM1VUZ6clRtMWk3dVpucENjbFc5ZGFmNldmd1EtUjVNUjdqdzJocDUtYXFObktyYUdTLVVUbktTRWtva2ZlOGp6V2dtMWw5X04zS1RUUFZLbDJUN1RDSkR1NUZreEt0T2RReU9rMk9rbHJJOGxqVG00dzhfejBZdzducUpoekVYTUtTQ01OOUFja092ZXVBM2dMUnk2djE3VldVNEJuNUszcXYwUUNQU195Tkx4aGZSOE9JYkU3V3BtQUE2a3U5Z21TS1czbTFidWdUMk5GRUhhaGtWRy14OHVwU3VxWW9UaHVwclJ0QVBTUSIsInYiOiIiLCJ1IjoiIn0=; expires=Tue, 29 Jan 2019 05:15:34 GMT; path=/; domain=.fiverr.com'}
with closing(get(url, stream=True, headers=headers, cookies=cookies)) as resp:
if is_good_response(resp):
return resp.content
else:
return None
except RequestException as e:
log_error('Error during requests to {0} : {1}'.format(url, str(e)))
return None
def is_good_response(resp):
content_type = resp.headers['Content-Type'].lower()
return (resp.status_code == 200
and content_type is not None)
def log_error(e):
print(e)
def _json_object_hook(d, freelancers):
gigs = d.pop("gigs", None)
for gig in gigs:
gig.pop("image_data", None)
gig.pop("assets", None)
gig.pop("impression_data", None)
gig.pop("gig_image", None)
if gig["seller_id"] not in freelancers:
freelancers[gig["seller_id"]] = gig["seller_name"]
return gigs
def get_gigs_from_api(url, api, categoryId, subcategoryId, page, freelancers, gigs):
apiUrl = "{0}{1}.json?" \
"category_id={2}&context_referrer=subcategory_listing" \
"&filter=rating&host=subcategory" \
"&sub_category_id={3}&page={4}"\
.format(url, api, categoryId, subcategoryId, page)
print("Crawling {0}".format(apiUrl))
response = get_page(apiUrl)
if response:
jsonresponse = json.loads(response)
gigs.extend(_json_object_hook(jsonresponse, freelancers))
if jsonresponse["pagination"]["current_page"] == jsonresponse["pagination"]["number_of_pages"]:
return
get_gigs_from_api(url, api, categoryId, subcategoryId, page + 1, freelancers, gigs)
return
def get_gig_details(url, suburl):
apiUrl = "{0}{1}".format(url, suburl)
print("Crawling {0}".format(apiUrl))
response = get_page(apiUrl)
if response:
page = BeautifulSoup(response, 'html.parser')
script = page.find_all("script")
gigdata = None
for tag in script:
if "gigData = {" in tag.get_text():
content = tag.get_text()
content = content.replace("\n", "")
content = content.replace("\r", "")
expression = "gigData = \{(.*)\},"
matches = re.search(expression, content)
gigdata = matches.group()
gigdata = gigdata.lstrip()
gigdata = gigdata.replace("gigData = ", "")
gigdata = gigdata.rstrip(",")
gigdata = demjson.decode(gigdata)
break
main_desc = page.find("div", {"class": "gig-main-desc"})
if main_desc:
main_desc = main_desc.get_text()
return gigdata, main_desc
def get_all_reviews(url, freelancerId, positive=True):
review_type = "positive"
if not positive:
review_type = "negative"
api = "{0}/ratings/index?gig_id={1}&page_size={2}&type={3}".format(url, freelancerId, 100000, review_type)
print("Crawling {0}".format(api))
reviews = get_page(api)
if reviews:
reviews = json.loads(reviews)
if "reviews" in reviews:
return reviews["reviews"]
return None
def get_freelancers_details(url, freelancerName):
api = "{0}/{1}?source=gig-cards".format(url, freelancerName)
print("Crawling {0}".format(api))
page = get_page(api)
response = {}
user = {}
user_found = response_found = testdata_found = False
if page:
page = BeautifulSoup(page, 'html.parser')
script = page.find_all("script")
for tag in script:
if "window.initialData.SellerCard" in tag.get_text():
content = tag.get_text()
expression = "window.initialData.SellerCard = \{(.*)\};"
matches = re.search(expression, content)
user = matches.group()
user = user.lstrip()
user = user.replace("window.initialData.SellerCard = ", "")
user = user.rstrip(";")
user = json.loads(user)
user_found = True
if "document.viewSellerProfile" in tag.get_text():
content = tag.get_text()
expression = "document.viewSellerProfile = \{(.*)\};"
matches = re.search(expression, content)
response = matches.group()
response = response.lstrip()
response = response.replace("document.viewSellerProfile = ", "")
response = response.rstrip(";")
response = json.loads(response)
response_found = True
if "document.sellerTestsData" in tag.get_text():
content = tag.get_text()
expression = "document.sellerTestsData = \{(.*)\}"
matches = re.search(expression, content)
testdata = matches.group()
testdata = testdata.lstrip()
testdata = testdata.replace("document.sellerTestsData = ", "")
testdata = testdata.rstrip(";")
testdata = json.loads(testdata)
testdata_found = True
if response_found:
if user_found:
response["user"] = user["user"]
if testdata_found:
response["testdata"] = testdata["test_results"]
return response
return {}
def write_to_excel(sheetname, dataframe, writer):
df = pd.DataFrame(dataframe)
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name=sheetname)
def append_to_excel(filename, sheet_name, df, startrow=None,
truncate_sheet=False,
**to_excel_kwargs):
# ignore [engine] parameter if it was passed
if 'engine' in to_excel_kwargs:
to_excel_kwargs.pop('engine')
df = pd.DataFrame(df)
writer = pd.ExcelWriter(filename, engine='openpyxl')
# Python 2.x: define [FileNotFoundError] exception if it doesn't exist
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
try:
# try to open an existing workbook
writer.book = load_workbook(filename)
# get the last row in the existing Excel sheet
# if it was not specified explicitly
if startrow is None and sheet_name in writer.book.sheetnames:
startrow = writer.book[sheet_name].max_row
# truncate sheet
if truncate_sheet and sheet_name in writer.book.sheetnames:
# index of [sheet_name] sheet
idx = writer.book.sheetnames.index(sheet_name)
# remove [sheet_name]
writer.book.remove(writer.book.worksheets[idx])
# create an empty sheet [sheet_name] using old index
writer.book.create_sheet(sheet_name, idx)
# copy existing sheets
writer.sheets = {ws.title:ws for ws in writer.book.worksheets}
except FileNotFoundError:
# file does not exist yet, we will create it
pass
if startrow is None:
startrow = 0
# write out the new sheet
df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs)
# save the workbook
writer.save()
def crawl_gigs_by_category(url, categoryName, excel_file):
categoriesFile = open("categories", "w")
categoriesFile.write("category, categoryId\n")
subCategoriesFile = open("subcategories", "w")
subCategoriesFile.write("categoryId, subcategory, subcategoryId\n")
fiverrUrlFile = open("FiverrUrls", "r")
fiverrUrls = json.load(fiverrUrlFile)
gigs = defaultdict()
freelancers = {}
subcategory_dataframe = OrderedDefaultDict()
category_dataframe= OrderedDefaultDict()
for menu in fiverrUrls["menu"]:
if menu["type"] == "categories":
for category in menu["categories"]:
categoriesFile.write("{0},{1}\n".format(category["name"], category["id"]))
category_dataframe["category"].append(category["name"])
category_dataframe["category_id"].append(category["id"])
if category["name"] == categoryName:
for subcategory in category["subcategories"]:
gig_list = []
subCategoriesFile.write("{0},{1},{2}\n".format(category["id"], subcategory["name"], subcategory["id"]))
get_gigs_from_api(url, subcategory["url"], category["id"], subcategory["id"], 0, freelancers, gig_list)
gigs[subcategory["id"]] = gig_list
subcategory_dataframe["categoryId"].append(category["id"])
subcategory_dataframe["subcategory"].append(subcategory["name"])
subcategory_dataframe["subcategoryId"].append(subcategory["id"])
fiverrUrlFile.close()
append_to_excel(excel_file, "categories", category_dataframe)
append_to_excel(excel_file, "subcategories", subcategory_dataframe)
gigsFile = open("gigs", "w")
gigsFile.write("subcategoryId|categoryId|gig_id|title|status|price|rating|rating_count|"
"is_featured|gig_created|gig_locale|max_qantity|seller_id|seller_country\n")
gigs_data_frame = defaultdict(list)
gigs_package_frame = OrderedDefaultDict()
unique_gigs = defaultdict()
for key, values in gigs.items():
for value in values:
gigsFile.write("{0}|{1}|{2}|{3}|{4}|{5}|{6}|{7}|{8}|{9}|{10}|{11}|{12}|{13}\n".format(key, value["category_id"], value["gig_id"],
value["title"], value["status"], value["price"],
value["rating"], value["rating_count"], value["is_featured"],
value["gig_created"], value["gig_locale"], value["max_quantity"],
value["seller_id"], value["seller_country"]))
gig_url = discription = None
gigdata = {}
if value["gig_id"] not in unique_gigs:
skill_list = ""
if value.get("skills", None) :
for skill in value.get("skills", None):
skill_list += "," + skill
skill_list = skill_list.lstrip(",")
gig_url = value.get("gig_url", None)
unique_gigs[value["gig_id"]] = True
gigs_data_frame["subcategoryId"].append(key)
gigs_data_frame["categoryId"].append(value.get("category_id", None))
gigs_data_frame["gig_id"].append(value.get("gig_id", None))
gigs_data_frame["title"].append(value.get("title", None))
gigs_data_frame["status"].append(value.get("status", None))
gigs_data_frame["price"].append(value.get("price",None))
gigs_data_frame["rating"].append(value.get("rating", None))
gigs_data_frame["rating_count"].append(value.get("rating_count", None))
gigs_data_frame["is_featured"].append(value.get("is_featured", None))
gigs_data_frame["fastest_delivery_time"].append(value.get("fastest_delivery_time", None))
gigs_data_frame["avg_delivery_time"].append(value.get("avg_delivery_time", None))
gigs_data_frame["gig_created"].append(value.get("gig_created", None))
gigs_data_frame["gig_locale"].append(value.get("gig_locale", None))
gigs_data_frame["max_qantity"].append(value.get("max_quantity", None))
gigs_data_frame["skills"].append(skill_list)
gigs_data_frame["seller_id"].append(value.get("seller_id", None))
gigs_data_frame["seller_country"].append(value.get("seller_country", None))
gigs_data_frame["is_new_seller"].append(value.get("is_new_seller", None))
gigs_data_frame["seller_avg_response"].append(value.get("seller_avg_response", None))
gigs_data_frame["seller_level"].append(value.get("seller_level", None))
gigs_data_frame["price_highest"].append(value.get("price_highest", None))
gigs_data_frame["gig_url"].append(value.get("gig_url", None))
if gig_url:
gigdata, discription = get_gig_details(url, gig_url)
gigs_data_frame["ordersInQueue"].append(gigdata.get("ordersInQueue", None))
gigs_data_frame["tags"].append(gigdata.get("tags", None))
gigs_data_frame["pricingModel"].append(gigdata.get("pricingModel", None))
if gigdata.get("pricingModel", None) == 'Package' and value.get("packages", None):
for package in value.get("packages", []):
gigs_package_frame["gig_id"].append(value.get("gig_id", None))
gigs_package_frame["title"].append(package.get("title", None))
gigs_package_frame["description"].append(package.get("description", None))
gigs_package_frame["duration"].append(package.get("duration", None))
gigs_package_frame["duration_unit"].append(package.get("duration_unit", None))
gigs_package_frame["price"].append(package.get("price", None))
modifications = None
extra_fast_price = None
extra_fast_duration = None
if package.get("content", None):
for content in package.get("content", []):
if content.get('buyable_type', None) == "modifications" and content.get("extra_data", None):
modifications = content.get("extra_data", None).get("included_modifications", None)
if content.get('buyable_type', None) == "extra_fast":
extra_fast_price = content.get("price", None)
extra_fast_duration = content.get("duration", None)
gigs_package_frame["modifications"].append(modifications)
gigs_package_frame["extra_fast_price"].append(extra_fast_price)
gigs_package_frame["extra_fast_duration"].append(extra_fast_duration)
append_to_excel(excel_file, "gigs", gigs_data_frame)
append_to_excel(excel_file, "gigs_package", gigs_package_frame)
gigsFile.close()
freelancerFile = open("freelancersList", "w")
freelancerFile.write("seller_id,seller_name\n")
for seller_id, seller_name in freelancers.items():
freelancerFile.write("{0},{1}\n".format(seller_id, seller_name))
freelancerFile.close()
def crawl_reviews(url, excel_file, start=0, end=200):
i = 1
start = int(start)
end = int(end)
positive_reviews = defaultdict(list)
negative_reviews = defaultdict(list)
header = False
startrow = None
if start == 1:
header = True
startrow = 0
arg = {'header': header}
gigs = open("gigs", "r")
gigs.readline()
for gig in gigs.readlines():
if i >= start and i <= end:
gig_id = gig.split("|")[2]
gig_id = gig_id.lstrip("'")
response = get_all_reviews(url, gig_id, positive=True)
if response:
positive_reviews[gig_id]= response
response = get_all_reviews(url, gig_id, positive=False)
if response:
negative_reviews[gig_id] = response
i += 1
positive_reviews_dataframe = OrderedDefaultDict()
negative_reviews_dataframe = OrderedDefaultDict()
reviews_as_buyer_file = open("BuyerReviews", "w")
reviews_as_seller_file = open("SellerReviews", "w")
reviews_as_buyer_file.write("gig_id|reviewer_username|rating|comment|created_at\n")
reviews_as_seller_file.write("gig_id|reviewer_username|rating|comment|created_at\n")
for gig_id,reviews in positive_reviews.items():
for review in reviews:
reviews_as_buyer_file.write("{0}|{1}|{2}|{3}|{4}\n".format(gig_id, review["username"],
review["value"],
review["comment"],
review["created_at"]))
positive_reviews_dataframe["gig_id"].append(gig_id)
positive_reviews_dataframe["reviewer_username"].append(review["username"])
positive_reviews_dataframe["rating"].append(review["value"])
positive_reviews_dataframe["comment"].append(review["comment"])
positive_reviews_dataframe["created_at"].append(review["created_at"])
positive_reviews_dataframe["work_sample"].append(review.get("work_sample", None))
seller_response = review.get("seller_response", None)
if seller_response:
seller_response = seller_response.get("comment", None)
else:
seller_response = None
positive_reviews_dataframe["seller_response"].append(seller_response)
append_to_excel(excel_file, "positive_reviews", positive_reviews_dataframe, startrow=startrow, **arg)
for gig_id, reviews in negative_reviews.items():
for review in reviews:
reviews_as_seller_file.write("{0}|{1}|{2}|{3}|{4}\n".format(gig_id, review["username"],
review["value"],
review["comment"],
review["created_at"]))
negative_reviews_dataframe["gig_id"].append(gig_id)
negative_reviews_dataframe["reviewer_username"].append(review["username"])
negative_reviews_dataframe["rating"].append(review["value"])
negative_reviews_dataframe["comment"].append(review["comment"])
negative_reviews_dataframe["created_at"].append(review["created_at"])
negative_reviews_dataframe["work_sample"].append(review.get("work_sample", None))
seller_response = review.get("seller_response", None)
if seller_response:
seller_response = seller_response.get("comment", None)
else:
seller_response = None
negative_reviews_dataframe["seller_response"].append(seller_response)
append_to_excel(excel_file, "negative reviews", negative_reviews_dataframe, startrow=startrow, **arg)
reviews_as_seller_file.close()
reviews_as_buyer_file.close()
def crawl_freelancers_details(url, excel_file, start=0, end=200):
i = 1
start = int(start)
end = int(end)
freelancersDetails_dataframe = OrderedDefaultDict()
freelancerEdu_dataframe = OrderedDefaultDict()
freelancerCert_dataframe = OrderedDefaultDict()
freelancertests_dataframe = OrderedDefaultDict()
freelancersDetails = defaultdict()
freelancerFile = open("freelancersList", "r")
freelancerFile.readline()
for line in freelancerFile.readlines():
if i >= start and i <= end:
freelancerUserName = line.split(",")[1]
freelancerUserName = freelancerUserName.rstrip("\n")
freelancersDetails[freelancerUserName] = get_freelancers_details(url, freelancerUserName)
i += 1
freelancersDetailsFile = open("freelancersDetails", "w")
freelancersDetailsFile.write("user_id|username|rating|ratings_count|"
"country|member_since|is_pro|is_seller|is_pro_experience|"
"is_ambassador|custom_orders_allowed|active_skills|languages\n")
for freelancerUserName, data in freelancersDetails.items():
user_data = data.get("user", None)
if user_data is None:
print("{0} has empty data".format(freelancerUserName))
if user_data:
skills = data.get("skills", None)
active_skills = ""
if skills:
for skill in skills["list"]:
if skill["status"] == "active":
active_skills += "," + skill["name"]
active_skills = active_skills.lstrip(",")
languges = data.get("proficient_languages", None)
proficient_languages = ""
if languges:
for languge in languges["list"]:
proficient_languages += "," + languge["name"]
proficient_languages = proficient_languages.lstrip(",")
social_accounts = ""
if "social_accounts" in data:
accounts = data.get("social_accounts", None)
for account in accounts["list"]:
social_accounts += "," + account["value"]
social_accounts.lstrip(",")
if data.get("testdata") is not None and data.get("testdata"):
for testdata in data["testdata"]:
freelancertests_dataframe["userid"].append(user_data.get("id", None))
freelancertests_dataframe["test_title"].append(testdata.get("title", None))
freelancertests_dataframe["score"].append(testdata.get("score", None))
freelancertests_dataframe["platform_name"].append(testdata.get("platform_name", None))
freelancertests_dataframe["passed"].append(testdata.get("passed", None))
freelancertests_dataframe["total_questions"].append(testdata.get("total_questions", None))
freelancertests_dataframe["slug"].append(testdata.get("slug", None))
freelancertests_dataframe["status"].append(testdata.get("status", None))
if "certifications" in data:
for cert in data["certifications"]["list"]:
freelancerCert_dataframe["userid"].append(user_data.get("id", None))
freelancerCert_dataframe["certification_name"].append(cert.get("certification_name", None))
freelancerCert_dataframe["received_from"].append(cert.get("received_from", None))
freelancerCert_dataframe["year"].append(cert.get("year", None))
if "educations" in data:
education = data["educations"]["list"]
for edu in education:
freelancerEdu_dataframe["userid"].append(user_data.get("id", None))
freelancerEdu_dataframe["degree"].append(edu.get("degree", None))
freelancerEdu_dataframe["from_year"].append(edu.get("from_year", None))
freelancerEdu_dataframe["to_year"].append(edu.get("to_year", None))
freelancerEdu_dataframe["degree_title"].append(edu.get("degree_title", None))
freelancerEdu_dataframe["school"].append(edu.get("school", None))
freelancerEdu_dataframe["country"].append(edu.get("country", None))
freelancersDetailsFile.write(
"{0}|{1}|{2}|{3}|{4}|{5}|{6}|{7}|{8}|{9}|{10}|{11}|{12}\n".format(user_data["id"],
freelancerUserName,
user_data["rating"],
user_data["ratings_count"],
user_data["country"],
user_data["member_since"],
user_data["is_pro"],
user_data["is_seller"],
user_data["is_pro_experience"],
user_data["is_ambassador"],
user_data["custom_orders_allowed"],
active_skills,
proficient_languages))
freelancersDetails_dataframe["user_id"].append(user_data.get("id", None))
freelancersDetails_dataframe["username"].append(freelancerUserName)
freelancersDetails_dataframe["overview"].append(data.get('overview', None))
freelancersDetails_dataframe["rating"].append(user_data.get("rating", None))
freelancersDetails_dataframe["ratings_count"].append(user_data.get("ratings_count", None))
freelancersDetails_dataframe["country"].append(user_data.get("country", None))
freelancersDetails_dataframe["member_since"].append(user_data.get("member_since", None))
freelancersDetails_dataframe["is_pro"].append(user_data.get("is_pro", None))
freelancersDetails_dataframe["is_seller"].append(user_data.get("is_seller", None))
freelancersDetails_dataframe["is_pro_experience"].append(user_data.get("is_pro_experience", None))
freelancersDetails_dataframe["is_ambassador"].append(user_data.get("is_ambassador", None))
freelancersDetails_dataframe["custom_orders_allowed"].append(user_data.get("custom_orders_allowed", None))
freelancersDetails_dataframe["active_skills"].append(active_skills)
freelancersDetails_dataframe["languages"].append(proficient_languages)
freelancersDetails_dataframe["social_accounts"].append(social_accounts)
header = False
startrow= None
if start == 1:
header = True
startrow = 0
arg = {'header': header}
append_to_excel(excel_file, "freelancers", freelancersDetails_dataframe, startrow=startrow, **arg)
append_to_excel(excel_file, "freelancers_education", freelancerEdu_dataframe, startrow=startrow, **arg)
append_to_excel(excel_file, "freelancers_cert", freelancerCert_dataframe, startrow=startrow, **arg)
append_to_excel(excel_file, "freelancers_tests", freelancertests_dataframe, startrow=startrow, **arg)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--start", dest="start", help="Starting line number to start processing", default=0)
parser.add_argument("--end", dest="end", help="Last line number for processing", default=200)
parser.add_argument("--type", dest="type", help="type of the data to crawl", choices=["reviews", "freelancers"], required=True)
args = parser.parse_args()
start = time.time()
url = 'https://www.fiverr.com'
excel_file = 'pandas_simple.xlsx'
crawl_gigs_by_category(url, "Programming Tech", excel_file)
if args.type == "reviews":
crawl_reviews(url, excel_file, args.start, args.end)
if args.type == "freelancers":
crawl_freelancers_details(url, excel_file, args.start, args.end)
print("Total time taken {0}".format(time.time() - start))