-
Notifications
You must be signed in to change notification settings - Fork 5
/
Context.agda
269 lines (237 loc) · 12.1 KB
/
Context.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
module Context where
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Relation.Nullary
open import Cubical.Foundations.Prelude
open import Cubical.Functions.FunExtEquiv
open import Cubical.Functions.Embedding
open import Cubical.Data.Nat
open import Cubical.Data.Nat.Order
open import Cubical.Data.Sigma
open import Cubical.Data.Sum
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Fin hiding (_/_)
private
variable
ℓ ℓ' ℓ'' : Level
record Ctx (A : Type ℓ) : Type ℓ where
field
len : ℕ
elts : Fin len → A
open Ctx
Var : ∀ {A : Type ℓ} → Ctx A → Type
Var Θ = Fin (Ctx.len Θ)
_[_] : ∀ {A : Type ℓ} → (Θ : Ctx A) → Var Θ → A
Θ [ x ] = Ctx.elts Θ x
substitution : {A : Type ℓ}(B : A → Type ℓ') → Ctx A → Type ℓ'
substitution B Γ = ∀ (x : Var Γ) → B (Γ [ x ])
empty-ctx : ∀ (A : Type ℓ) → Ctx A
empty-ctx _ .len = 0
empty-ctx _ .elts x = ⊥.rec (¬Fin0 x)
append-ctx : ∀ {A : Type ℓ} → Ctx A → Ctx A → Ctx A
append-ctx Γ₁ Γ₂ .len = Γ₁ .len + Γ₂ .len
append-ctx Γ₁ Γ₂ .elts x with (Iso.fun (Fin+≅Fin⊎Fin (Γ₁ .len) (Γ₂ .len)) x)
... | inl x₁ = Γ₁ .elts x₁
... | inr x₂ = Γ₂ .elts x₂
append-i₁ : ∀ {A : Type ℓ} → (Γ₁ Γ₂ : Ctx A) → (Var Γ₁) →
(Var (append-ctx Γ₁ Γ₂))
append-i₁ Γ₁ Γ₂ x₁ = Iso.inv (Fin+≅Fin⊎Fin (Γ₁ .len) (Γ₂ .len)) (inl x₁)
append-i₁-elts : ∀ {A : Type ℓ}
→ (Γ₁ Γ₂ : Ctx A) → (x₁ : Var Γ₁)
→ (append-ctx Γ₁ Γ₂) [ append-i₁ Γ₁ Γ₂ x₁ ] ≡ Γ₁ [ x₁ ]
append-i₁-elts Γ₁ Γ₂ x₁ with (append-i₁ Γ₁ Γ₂ x₁) .fst ≤? (Γ₁ .len)
... | inl x₁<Γ₁len = cong (Γ₁ .elts) (Σ≡Prop (λ n → isProp≤) refl)
... | inr x₁≥Γ₁len = ⊥.rec (¬m<m x₁<x₁) where
open <-Reasoning
x₁<x₁ : x₁ .fst < x₁ .fst
x₁<x₁ = x₁ .fst <≤⟨ x₁ .snd ⟩
Γ₁ .len ≤≡⟨ x₁≥Γ₁len ⟩
x₁ .fst ∎
append-i₂ : ∀ {A : Type ℓ} → (Γ₁ Γ₂ : Ctx A) → (Var Γ₂) →
(Var (append-ctx Γ₁ Γ₂))
append-i₂ Γ₁ Γ₂ x₂ = Iso.inv (Fin+≅Fin⊎Fin (Γ₁ .len) (Γ₂ .len)) (inr x₂)
append-i₂-elts : ∀ {A : Type ℓ} → (Γ₁ Γ₂ : Ctx A) → (x₂ : Var Γ₂) →
(append-ctx Γ₁ Γ₂) [ append-i₂ Γ₁ Γ₂ x₂ ] ≡ Γ₂ [ x₂ ]
append-i₂-elts Γ₁ Γ₂ x₂ with (append-i₂ Γ₁ Γ₂ x₂) .fst ≤? (Γ₁ .len)
... | inl i₂x₂<Γ₁ = ⊥.rec (¬m+n<m i₂x₂<Γ₁)
... | inr i₂x₂≥Γ₁ = cong (Γ₂ .elts) (Σ≡Prop (λ n → isProp≤) reason) where
open <-Reasoning
reason : Γ₁ .len + x₂ .fst ∸ Γ₁ .len ≡ x₂ .fst
reason = (Γ₁ .len + x₂ .fst) ∸ Γ₁ .len
≡⟨ (λ i → +-comm (Γ₁ .len) (x₂ .fst) i ∸ Γ₁ .len ) ⟩
(x₂ .fst + Γ₁ .len) ∸ Γ₁ .len
≡⟨ sym (≤-∸-k {m = Γ₁ .len} ≤-refl) ⟩
x₂ .fst + (Γ₁ .len ∸ Γ₁ .len)
≡⟨ (λ i → x₂ .fst + (n∸n (Γ₁ .len) i)) ⟩
x₂ .fst + 0
≡⟨ +-zero (x₂ .fst) ⟩
x₂ .fst ∎
append-subst : ∀ {A : Type ℓ}{B : A → Type ℓ'} →
{Γ₁ Γ₂ : Ctx A} → (substitution B) Γ₁ →
substitution B Γ₂ → substitution B (append-ctx Γ₁ Γ₂)
append-subst {B = B}{Γ₁ = Γ₁}{Γ₂} γ₁ γ₂ x with x .fst ≤? Γ₁ .len
... | inl x<Γ₁len = γ₁ ((x .fst) , x<Γ₁len)
... | inr x≥Γ₁len =
transport (cong (λ a → B (Γ₂ .elts ((x .fst ∸ Γ₁ .len) , a))) (isProp≤ _ _))
(γ₂ ((x .fst ∸ Γ₁ .len) , reason)) where
open <-Reasoning
reason : (x .fst ∸ Γ₁ .len) < Γ₂ .len
reason =
1 + (x .fst ∸ Γ₁ .len)
≡≤⟨ ≤-∸-k x≥Γ₁len ⟩
(1 + x .fst) ∸ Γ₁ .len
≤≡⟨ ≤-∸-≤ (1 + x .fst) ((Γ₁ .len + Γ₂ .len)) (Γ₁ .len) (x .snd) ⟩
(Γ₁ .len + Γ₂ .len) ∸ Γ₁ .len
≡⟨ (λ i → +-comm (Γ₁ .len) (Γ₂ .len) i ∸ Γ₁ .len) ⟩
(Γ₂ .len + Γ₁ .len) ∸ Γ₁ .len
≡⟨ sym (≤-∸-k {m = Γ₁ .len} ≤-refl) ⟩
Γ₂ .len + (Γ₁ .len ∸ Γ₁ .len)
≡⟨ (λ i → Γ₂ .len + n∸n (Γ₁ .len) i) ⟩
Γ₂ .len + 0
≡⟨ +-zero (Γ₂ .len) ⟩
Γ₂ .len ∎
postulate append-subst-i₁ : ∀ {A : Type ℓ}{B : A → Type ℓ'} →
{Γ₁ Γ₂ : Ctx A} →
(γ₁ : substitution B Γ₁) →
(γ₂ : substitution B Γ₂)
→ (x₁ : Var Γ₁)
→ PathP (λ i → B (append-i₁-elts Γ₁ Γ₂ x₁ i))
(append-subst {A = A}{B = B} γ₁ γ₂
(append-i₁ Γ₁ Γ₂ x₁)) (γ₁ x₁)
postulate append-subst-i₂ : ∀ {A : Type ℓ}{B : A → Type ℓ'} →
{Γ₁ Γ₂ : Ctx A}
→ (γ₁ : substitution B Γ₁) → (γ₂ : substitution B Γ₂)
→ (x₂ : Var Γ₂)
→ PathP (λ i → B (append-i₂-elts Γ₁ Γ₂ x₂ i))
(append-subst {A = A}{B = B} γ₁ γ₂
(append-i₂ Γ₁ Γ₂ x₂)) (γ₂ x₂)
sole : ∀ {A : Type ℓ} → A → Ctx A
sole a = record { len = 1 ; elts = λ _ → a }
the-var : ∀ {A : Type ℓ} → (a : A) → Var (sole a)
the-var a = zero , (zero , refl)
_/the-var : ∀ {A : Type ℓ}{B : A → Type ℓ'}{a : A} → B a →
substitution B (sole a)
b /the-var = λ x → b
lem2 : ∀ l m n
→ m ≤ n
→ l < n ∸ m
→ l + m < n
lem2 l m n m≤n l<n-m =
l + m <≡⟨ ≤-+k l<n-m ⟩
(n ∸ m) + m ≡⟨ ≤-∸-+-cancel m≤n ⟩
n ∎
where open <-Reasoning
finCases : ∀ l m n → Fin (l + m + n) → (Fin l ⊎ Fin m) ⊎ Fin n
finCases l m n x =
map (Iso.fun (Fin+≅Fin⊎Fin l m))
(λ x → x)
(Iso.fun (Fin+≅Fin⊎Fin (l + m) n) x)
_[_/_] : ∀ {A : Type ℓ} → (Θ : Ctx A) → Ctx A → Var Θ → Ctx A
_[_/_] {A = A} Θ Υ x = record
{ len = toℕ x + Ctx.len Υ + (Ctx.len Θ ∸ (1 + toℕ x))
; elts = λ y → elts' (finCases (toℕ x) (Ctx.len Υ)
(Ctx.len Θ ∸ (1 + toℕ x)) y)
}
where
elts' : (Fin (toℕ x) ⊎ Fin (Ctx.len Υ)) ⊎ Fin (Ctx.len Θ ∸ (1 + toℕ x)) → A
elts' (inl (inl y<x)) = Ctx.elts Θ ((toℕ y<x) , <-trans (snd y<x) (snd x))
elts' (inl (inr y∈Υ)) = Ctx.elts Υ y∈Υ
elts' (inr y>x) =
Ctx.elts Θ ((toℕ y>x + (1 + toℕ x)) ,
lem2 (toℕ y>x) (1 + toℕ x) (Ctx.len Θ) (snd x) (snd y>x))
-- sole-/R : ∀ {A : Type ℓ} → (Θ : Ctx A) → (x : Var Θ) →
-- Θ [ sole (Θ [ x ]) / x ] ≡ Θ
-- sole-/R {A = A} Θ x @ (xN , x<lenΘ) =
-- λ i → record { len = lem3 i ; elts = funExtDep elts' i }
-- where
-- lem3 : Ctx.len (Θ [ sole (Θ [ x ]) / x ]) ≡ Ctx.len Θ
-- lem3 =
-- xN + 1 + (Ctx.len Θ ∸ (1 + xN)) ≡⟨ +-comm (xN + 1) _ ⟩
-- (Ctx.len Θ ∸ (1 + xN)) + (xN + 1)
-- ≡⟨ (λ i → (Ctx.len Θ ∸ (1 + xN)) + +-comm (xN) 1 i) ⟩
-- (Ctx.len Θ ∸ (1 + xN)) + (1 + xN) ≡⟨ ≤-∸-+-cancel (snd x) ⟩
-- Ctx.len Θ ∎
-- elts' : {y₀ : Fin (toℕ (xN , x<lenΘ) + 1 + (Ctx.len Θ ∸ suc xN))}
-- → {y₁ : Fin (Ctx.len Θ)}
-- → PathP (λ i → Fin (lem3 i)) y₀ y₁
-- → Ctx.elts (Θ [ sole (Θ [ x ]) / x ]) y₀ ≡ Ctx.elts Θ y₁
-- elts' p with toℕ (p i0) ≤? (xN + 1)
-- ... | inl z with toℕ (p i0) ≤? xN
-- ... | inl x = cong (Ctx.elts Θ) (Σ≡Prop (λ n → isProp≤) λ i → toℕ (p i))
-- ... | inr w = cong (Ctx.elts Θ) (Σ≡Prop ((λ n → isProp≤)) lemma)
-- where
-- lemma' : toℕ (p i0) ≤ xN
-- lemma' = pred-≤-pred (1 + toℕ (p i0) ≤≡⟨ z ⟩ +-comm xN 1)
-- where open <-Reasoning
-- lemma : xN ≡ toℕ (p i1)
-- lemma = xN ≡⟨ ≤-antisym w lemma' ⟩ toℕ (p i0)
-- ≡⟨ (λ i → toℕ (p i)) ⟩ toℕ (p i1) ∎
-- elts' p | inr z = cong (Ctx.elts Θ) (Σ≡Prop (λ n → isProp≤ ) lem5)
-- where
-- yN = toℕ (p i0)
-- y₁N = toℕ (p i1)
-- lem5 : yN ∸ (toℕ x + 1) + (1 + toℕ x) ≡ y₁N
-- lem5 =
-- yN ∸ (toℕ x + 1) + (1 + toℕ x)
-- ≡⟨ (λ j → yN ∸ (toℕ x + 1) + +-comm 1 (toℕ x) j) ⟩
-- yN ∸ (toℕ x + 1) + (toℕ x + 1) ≡⟨ ≤-∸-+-cancel z ⟩
-- yN ≡⟨ (λ i → toℕ (p i)) ⟩
-- y₁N ∎
-- sole-/L : ∀ {A : Type ℓ} →
-- (a : A) → (Θ : Ctx A) → sole a [ Θ / the-var a ] ≡ Θ
-- sole-/L a Θ = λ i → record { len = eq-len i ; elts = funExtDep elts' i }
-- where
-- eq-len : Ctx.len (sole a [ Θ / the-var a ]) ≡ Ctx.len Θ
-- eq-len = +-zero (Ctx.len Θ)
-- elts' : {y₀ : Fin (Ctx.len (sole a [ Θ / the-var a ]))}
-- {y₁ : Fin (Ctx.len Θ)}
-- → PathP (λ i → Fin (eq-len i) ) y₀ y₁
-- → Ctx.elts (sole a [ Θ / the-var a ]) y₀ ≡ Ctx.elts Θ y₁
-- elts' p with toℕ (p i0) ≤? (0 + Ctx.len Θ)
-- ... | inl z with toℕ (p i0) ≤? 0
-- ... | inl x = ⊥.rec (¬-<-zero x) -- y₀ < 0, contradiction
-- ... | inr z = cong (Ctx.elts Θ)
-- (Σ≡Prop (λ n → isProp≤) λ i → toℕ (p i)) -- y₀ < Ctx.len, done
-- elts' p | inr z = ⊥.rec (¬m<m contra) -- y₀ ≡ y₁ and y₀ ≥ len Θ and
-- y₁ < len Θ, contradiction len Θ ≤ y₀ ≡ y₁ < len Θ
-- where
-- open <-Reasoning
-- contra : Ctx.len Θ < Ctx.len Θ
-- contra = Ctx.len Θ ≤<⟨ z ⟩
-- (toℕ (p i0) ≡<⟨ (λ i → toℕ (p i)) ⟩
-- (toℕ (p i1) <≡⟨ snd (p i1) ⟩
-- Ctx.len Θ ∎))
nest-var : ∀ {A : Type ℓ} → (Θ₁ Θ₂ : Ctx A) → (x : Var Θ₁) (y : Var Θ₂) →
Var (Θ₁ [ Θ₂ / x ])
nest-var Θ₁ Θ₂ x y = (toℕ x + toℕ y) , reason
where
open <-Reasoning
reason : toℕ x + toℕ y < toℕ x + Ctx.len Θ₂ + (Ctx.len Θ₁ ∸ suc (toℕ x))
reason =
toℕ x + toℕ y <≤⟨ <-k+ (snd y) ⟩
toℕ x + Ctx.len Θ₂ ≤≡⟨ ≤SumLeft ⟩
toℕ x + Ctx.len Θ₂ + (Ctx.len Θ₁ ∸ suc (toℕ x)) ∎
-- nest-/ : ∀ {A : Type ℓ} → (Θ₁ Θ₂ : Ctx A) → (x : Var Θ₁) (y : Var Θ₂) →
-- Θ₂ [ y ] ≡ Θ₁ [ Θ₂ / x ] [ nest-var Θ₁ Θ₂ x y ]
-- nest-/ {ℓ}{A} Θ₁ Θ₂ x y
-- postulate comp-/-/ : ∀ {A : Type ℓ} → (Θ₁ Θ₂ Θ₃ : Ctx A) →
-- (i : Var Θ₁) (j : Var Θ₂) → Θ₁ [ (Θ₂ [ Θ₃ / j ]) / i ] ≡
-- Θ₁ [ Θ₂ / i ] [ Θ₃ / nest-var Θ₁ Θ₂ i j ]
-- comp-/-/ Θ₁ Θ₂ Θ₃ x y = λ i →
-- record { len = eq-len i ; elts = funExtDep eq-elts i }
-- where eq-len : Ctx.len (Θ₁ [ (Θ₂ [ Θ₃ / y ]) / x ]) ≡
-- Ctx.len (Θ₁ [ Θ₂ / x ] [ Θ₃ / nest-var Θ₁ Θ₂ x y ])
-- eq-len =
-- toℕ x + (toℕ y + Ctx.len Θ₃ +
-- (Ctx.len Θ₂ ∸ suc (toℕ y))) + (Ctx.len Θ₁ ∸ suc (toℕ x))
-- ≡⟨ {!!} ⟩
-- (toℕ x + toℕ y) + Ctx.len Θ₃ +
-- (toℕ x + Ctx.len Θ₂ + (Ctx.len Θ₁ ∸ suc (toℕ x)) ∸
-- suc (toℕ x + toℕ y)) ∎
-- eq-elts : {z₀ : Var (Θ₁ [ (Θ₂ [ Θ₃ / y ]) / x ])}
-- {z₁ : Var (Θ₁ [ Θ₂ / x ] [ Θ₃ / nest-var Θ₁ Θ₂ x y ])}
-- → PathP (λ i → Fin (eq-len i)) z₀ z₁
-- → Ctx.elts (Θ₁ [ (Θ₂ [ Θ₃ / y ]) / x ]) z₀ ≡
-- Ctx.elts (Θ₁ [ Θ₂ / x ] [ Θ₃ / nest-var Θ₁ Θ₂ x y ]) z₁
-- eq-elts p with toℕ (p i0) ≤? ((toℕ x) + Ctx.len (Θ₂ [ Θ₃ / y ]))
-- ... | foo = {!!}