diff --git a/src/plugins/intel_cpu/src/nodes/memory.hpp b/src/plugins/intel_cpu/src/nodes/memory.hpp index 7b5c7a1fe16f21..25ab0a7c0ec31a 100644 --- a/src/plugins/intel_cpu/src/nodes/memory.hpp +++ b/src/plugins/intel_cpu/src/nodes/memory.hpp @@ -79,7 +79,8 @@ class MemoryOutput : public Node, public MemoryNode { bool needShapeInfer() const override { return false; } bool needPrepareParams() const override { return false; } - private: + +private: /** * @brief keeps reference to input sibling node */ diff --git a/src/plugins/intel_cpu/tests/functional/subgraph_tests/src/stateful_model.cpp b/src/plugins/intel_cpu/tests/functional/subgraph_tests/src/stateful_model.cpp new file mode 100644 index 00000000000000..d94a3f26aa3b84 --- /dev/null +++ b/src/plugins/intel_cpu/tests/functional/subgraph_tests/src/stateful_model.cpp @@ -0,0 +1,238 @@ +// Copyright (C) 2018-2023 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#include +#include "shared_test_classes/base/ov_subgraph.hpp" +#include "ngraph_functions/utils/ngraph_helpers.hpp" +#include "ngraph_functions/builders.hpp" + +using namespace InferenceEngine; +using namespace ov::test; + +namespace SubgraphTestsDefinitions { +class StaticShapeStatefulModel : public SubgraphBaseTest { +public: + static constexpr ov::element::Type_t testPrc = ov::element::Type_t::f32; + +public: + void SetUp() override { + targetDevice = ov::test::utils::DEVICE_CPU; + ov::element::Type netPrc = testPrc; + + const ov::Shape inpShape = {1, 1}; + targetStaticShapes = {{inpShape}}; + + auto arg = std::make_shared(netPrc, ov::Shape{1, 1}); + auto init_const = ov::op::v0::Constant::create(netPrc, ov::Shape{1, 1}, {0}); + + // The ReadValue/Assign operations must be used in pairs in the model. + // For each such a pair, its own variable object must be created. + const std::string variable_name("variable0"); + auto variable = std::make_shared( + ov::op::util::VariableInfo{ov::PartialShape::dynamic(), ov::element::dynamic, variable_name}); + + // Creating ov::Model + auto read = std::make_shared(init_const, variable); + std::vector> args = {arg, read}; + auto add = ngraph::builder::makeEltwise(arg, read, ngraph::helpers::EltwiseTypes::ADD); + auto assign = std::make_shared(add, variable); + auto add2 = ngraph::builder::makeEltwise(add, read, ngraph::helpers::EltwiseTypes::ADD); + auto res = std::make_shared(add2); + function = std::make_shared(ov::ResultVector({res}), ov::SinkVector({assign}), ov::ParameterVector({arg})); + } + + const std::vector& get_inputs() const { + static const std::vector input_vals = + {6.06f, 5.75f, 1.92f, 1.61f, 7.78f, 7.47f, 3.64f, 3.33f, 9.5f, 9.19f}; + return input_vals; + } + + const std::pair, std::vector>& calc_refs() const { + static const std::pair, std::vector> result = { + {6.06f, 17.87f, 25.54, 29.07f, 38.46f, 53.71f, 64.82, 71.79, 84.62, 103.31f}, // expected_res + {6.06f, 11.81f, 13.73f, 15.34f, 23.12f, 30.59f, 34.23, 37.56f, 47.06f, 56.25f} // expected_states + }; + return result; + } + + void prepare() { + compile_model(); + inferRequest = compiledModel.create_infer_request(); + ASSERT_TRUE(inferRequest); + } + + void run_test() { + auto& input_vals = get_inputs(); + for (size_t i = 0; i < input_vals.size(); ++i) { + inputs.clear(); + const auto& funcInputs = function->inputs(); + const auto& funcInput = funcInputs.front(); + auto tensor = ov::runtime::Tensor{ov::element::f32, funcInput.get_shape()}; + auto inputData = tensor.data::value_type>(); + inputData[0] = input_vals[i]; + inputs.insert({funcInput.get_node_shared_ptr(), tensor}); + for (const auto& input : inputs) { + inferRequest.set_tensor(input.first, input.second); + } + auto outputTensor = inferRequest.get_output_tensor(0); + ASSERT_TRUE(outputTensor); + inferRequest.infer(); + constexpr float rel_diff_threshold = 1e-4f; + const auto& expected_res = calc_refs().first; + const float expected_val = expected_res[i]; + const float actual_val = outputTensor.data::value_type>()[0]; + ASSERT_TRUE(abs(actual_val - expected_val) / abs(expected_val) < rel_diff_threshold); + auto states = inferRequest.query_state(); + ASSERT_FALSE(states.empty()); + auto mstate = states.front().get_state(); + ASSERT_TRUE(mstate); + const auto& expected_states = calc_refs().second; + const float expected_state_val = expected_states[i]; + const float actual_state_val = mstate.data::value_type>()[0]; + ASSERT_TRUE(abs(expected_state_val - actual_state_val) / abs(expected_state_val) < rel_diff_threshold); + } + } + + void reset_state() { + for (auto&& state : inferRequest.query_state()) { + state.reset(); + } + } +}; + +TEST_F(StaticShapeStatefulModel, smoke_Run_Stateful_Static) { + prepare(); + run_test(); + reset_state(); + run_test(); +} + +class DynamicShapeStatefulModel : public SubgraphBaseTest { +public: + static constexpr ov::element::Type_t testPrc = ov::element::Type_t::f32; + +public: + void SetUp() override { + targetDevice = ov::test::utils::DEVICE_CPU; + ov::element::Type netPrc = testPrc; + + const ov::Shape inpShape = {1, 1}; + const InputShape input_shape = {{-1, 1}, {{1, 1}, {2, 1}, {4, 1}, {8, 1}, {16, 1}}}; + init_input_shapes({input_shape}); + + auto arg = std::make_shared(netPrc, inputDynamicShapes.front()); + auto init_param = std::make_shared(netPrc, ov::PartialShape{-1, 1}); + + // The ReadValue/Assign operations must be used in pairs in the model. + // For each such a pair, its own variable object must be created. + const std::string variable_name("variable0"); + auto variable = std::make_shared( + ov::op::util::VariableInfo{ov::PartialShape::dynamic(), ov::element::dynamic, variable_name}); + + // Creating ov::Model + auto read = std::make_shared(init_param, variable); + std::vector> args = {arg, read}; + auto add = ngraph::builder::makeEltwise(arg, read, ngraph::helpers::EltwiseTypes::ADD); + constexpr int concat_axis = 0; + auto concat = std::make_shared(ov::NodeVector{arg, add}, concat_axis); + auto assign = std::make_shared(concat, variable); + auto res = std::make_shared(concat); + function = std::make_shared(ov::ResultVector({res}), ov::SinkVector({assign}), ov::ParameterVector({arg, init_param})); + } + + const std::vector& get_inputs() const { + static const std::vector input_vals = + {2.44f, 8.06f, 0.59f, 5.21f, 0.29f, 3.33f, 0.36f, 1.75f, 3.52f, 5.46f, 4.55f, 7.13f, 7.35f, 4.81f, 4.24f, 3.60f}; + return input_vals; + } + + std::vector calc_refs(const ov::Shape& inp_shape, std::vector& vec_state) { + auto size = inp_shape.front(); + auto& input_vals = get_inputs(); + std::vector input(input_vals.begin(), input_vals.begin() + size); + std::vector result(input.size(), 0.f); + for (size_t i = 0; i < input.size(); ++i) { + result[i] = input[i] + vec_state[i]; + } + result.insert(result.begin(), input.begin(), input.end()); + vec_state = result; + return result; + } + + void prepare() { + compile_model(); + inferRequest = compiledModel.create_infer_request(); + ASSERT_TRUE(inferRequest); + } + + void run_test() { + std::vector vec_state = {0}; + + auto states = inferRequest.query_state(); + ASSERT_FALSE(states.empty()); + auto init_tensor = ov::runtime::Tensor{testPrc, ov::Shape{1, 1}}; + auto init_data = init_tensor.data::value_type>(); + init_data[0] = vec_state[0]; + states.front().set_state(init_tensor); + + auto& input_vals = get_inputs(); + + for (auto&& shapes : targetStaticShapes) { + inputs.clear(); + auto &input_shape = shapes.front(); + const auto& funcInputs = function->inputs(); + const auto& funcInput = funcInputs.front(); + auto tensor = ov::runtime::Tensor{testPrc, input_shape}; + auto input_data = tensor.data::value_type>(); + for (size_t i = 0; i < input_shape.front(); ++i) { + input_data[i] = input_vals[i]; + } + inputs.insert({funcInput.get_node_shared_ptr(), tensor}); + for (const auto& input : inputs) { + inferRequest.set_tensor(input.first, input.second); + } + auto outputTensor = inferRequest.get_output_tensor(0); + ASSERT_TRUE(outputTensor); + inferRequest.infer(); + auto expected_res = calc_refs(input_shape, vec_state); + ASSERT_EQ(expected_res.size(), outputTensor.get_shape().front()); + auto actual_res = outputTensor.data::value_type>(); + + constexpr float rel_diff_threshold = 1e-4f; + for (size_t i = 0; i < expected_res.size(); ++i) { + const float expected_val = expected_res[i]; + const float actual_val = actual_res[i]; + ASSERT_TRUE(abs(actual_val - expected_val) / abs(expected_val) < rel_diff_threshold); + } + + auto states = inferRequest.query_state(); + ASSERT_FALSE(states.empty()); + auto mstate = states.front().get_state(); + ASSERT_TRUE(mstate); + ASSERT_EQ(mstate.get_shape().front(), vec_state.size()); + auto actual_state = mstate.data::value_type>(); + + for (size_t i = 0; i < vec_state.size(); ++i) { + const float expected_state_val = vec_state[i]; + const float actual_state_val = actual_state[i]; + ASSERT_TRUE(abs(expected_state_val - actual_state_val) / abs(expected_state_val) < rel_diff_threshold); + } + } + } + + void reset_state() { + for (auto&& state : inferRequest.query_state()) { + state.reset(); + } + } +}; + +TEST_F(DynamicShapeStatefulModel, smoke_Run_Stateful_Dynamic) { + prepare(); + run_test(); + reset_state(); + run_test(); +} + +} // namespace SubgraphTestsDefinitions \ No newline at end of file