-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtree_ensemble.py
627 lines (539 loc) · 28.9 KB
/
tree_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
import numpy as np
import copy
from collections import OrderedDict
from numba import njit, prange
from robust_boosting import exp_loss_robust, dtype, fit_plain_stumps, fit_robust_bound_stumps
from utils import get_contiguous_indices, get_n_proc
from concurrent.futures import ThreadPoolExecutor
@njit(nogil=True)
def find_min_yf_point(nodes, x, y, eps):
# Every node is: (self.id, id_left, id_right, self.w_l, self.w_r, self.b, self.coord, self.loss)
node_ids_to_explore = [0] # root node id
min_val = np.inf
while len(node_ids_to_explore) > 0:
node = nodes[node_ids_to_explore.pop()]
id_left, id_right, w_l, w_r, b, coord = int(node[1]), int(node[2]), node[3], node[4], node[5], int(node[6])
if x[coord] <= b + eps:
if id_left != -1:
node_ids_to_explore.append(int(nodes[id_left][0]))
else:
min_val = min(min_val, y * w_l)
if x[coord] >= b - eps:
if id_right != -1:
node_ids_to_explore.append(int(nodes[id_right][0]))
else:
min_val = min(min_val, y * (w_l + w_r))
return min_val
@njit(parallel=True, nogil=True)
def find_min_yf_tree_par(nodes, X, y, eps):
# == works as expected only if all numbers are in float32; float32 is the preferred choice due to less memory
eps = np.float32(eps)
f = np.zeros(X.shape[0])
for i in prange(X.shape[0]):
f[i] = find_min_yf_point(nodes, X[i], y[i], eps)
return f
@njit(nogil=True)
def predict_point(nodes, x):
# Every node is: (self.id, id_left, id_right, self.w_l, self.w_r, self.b, self.coord, self.loss)
node = nodes[0] # take the root node
while True:
id_left, id_right, w_l, w_r, b, coord = int(node[1]), int(node[2]), node[3], node[4], node[5], int(node[6])
if x[coord] < b:
if id_left != -1:
node = nodes[id_left]
else:
return w_l
else:
if id_right != -1:
node = nodes[id_right]
else:
return w_l + w_r
@njit(parallel=True, nogil=True)
def predict_tree_par(nodes, X):
f = np.zeros(X.shape[0])
for i in prange(X.shape[0]):
f[i] = predict_point(nodes, X[i])
return f
class Tree:
def __init__(self, id_=-1, left=None, right=None, w_l=0.0, w_r=0.0, b=0.0, coord=0, loss=0.0):
# (left == None and right == None) => leaf
# else => intermediate node
self.id, self.left, self.right = id_, left, right
# Note: w_l/w_r can have some values, but if left AND right is not None, then w_l/w_r are just ignored.
# However, we still may need them because of pruning - if a leaf node was pruned, then its parent kicks in.
self.w_l, self.w_r, self.b, self.coord, self.loss = w_l, w_r, b, coord, loss
self.node_list = []
def __repr__(self):
lval, rval, threshold = self.w_l, self.w_r + self.w_l, self.b
if self.left is None and self.right is None:
return 'if x[{}] < {:.4f}: {:.4f} else {:.4f} '.format(self.coord, threshold, lval, rval)
if self.left is None:
return 'if x[{}] < {:.4f}: {:.4f} '.format(self.coord, threshold, lval) + self.right.__repr__()
if self.right is None:
return self.left.__repr__() + 'if x[{}] >= {:.4f}: {:.4f} '.format(self.coord, threshold, rval)
s = ''
if self.left is not None:
s += 'if x[{}] < {:.4f} and '.format(self.coord, threshold) + self.left.__repr__()
if self.right is not None:
s += 'if x[{}] >= {:.4f} and '.format(self.coord, threshold) + self.right.__repr__()
return s
def __eq__(self, other):
""" Overrides the default equality comparison operator == """
if isinstance(other, Tree):
return (self.left == other.left and self.right == other.right and self.w_l == other.w_l and
self.w_r == other.w_r and self.b == other.b and self.coord == other.coord)
return False
def to_list(self):
tree_lst_left, tree_lst_right = [], []
id_left, id_right = -1, -1
if self.left is not None:
tree_lst_left = self.left.to_list()
id_left = self.left.id
if self.right is not None:
tree_lst_right = self.right.to_list()
id_right = self.right.id
curr_node = (self.id, id_left, id_right, self.w_l, self.w_r, self.b, self.coord, self.loss)
return [curr_node] + tree_lst_left + tree_lst_right # concatenate both lists
def to_array_contiguous(self):
""" Make ids correspond to node positions in the array. """
nodes = np.array(self.to_list())
max_node_id = int(nodes[:, 0].max())
nodes_new = np.zeros([max_node_id+1, len(nodes[0])])
for node in nodes:
nodes_new[int(node[0])] = node
return nodes_new
def predict(self, X):
parallel = True
if parallel and len(self.node_list) > 0: # 2nd condition is needed to prevent an error in predict_tree_par()
return predict_tree_par(self.node_list, X)
else:
return self.predict_native(X)
def predict_native(self, X):
def predict_recursive(curr_tree, idx):
""" To avoid copying the whole matrix X many times, we use global indices `idx` to directly use
the single matrix X as a closure variable. The only overhead is that the threshold comparison is done
for *all* examples.
Note: the parallel version using numba should be preferred.
"""
# route some points to the left and some to the right nodes
idx_left_superset = X[:, curr_tree.coord] < curr_tree.b
idx_left = idx * idx_left_superset
idx_right = idx * ~idx_left_superset
if curr_tree.left is None:
f[idx_left] = curr_tree.w_l
else:
predict_recursive(curr_tree.left, idx_left)
if curr_tree.right is None:
f[idx_right] = curr_tree.w_l + curr_tree.w_r
else:
predict_recursive(curr_tree.right, idx_right)
idx = np.full(X.shape[0], True)
f = np.zeros(len(idx))
predict_recursive(self, idx) # modifies the closure variable `f` in-place
return f
def find_min_yf(self, X, y, eps):
parallel = True # really crucial; 1-2x orders of magnitude speed-up over the native python version
if parallel and len(self.node_list) > 0: # 2nd condition is needed to prevent an error in predict_tree_par()
return find_min_yf_tree_par(self.node_list, X, y, eps)
else:
return self.find_min_yf_native(X, y, eps)
def find_min_yf_native(self, X, y, eps):
split_lbs, split_ubs = X[:, self.coord] - eps, X[:, self.coord] + eps
lval, rval = self.w_l, self.w_r + self.w_l
guaranteed_left = split_ubs < self.b
guaranteed_right = split_lbs > self.b
uncertain = (split_lbs <= self.b) * (split_ubs >= self.b)
if self.left is None:
left_min_yf = y[guaranteed_left] * lval
uleft_min_yf = y[uncertain] * lval
else:
left_min_yf = self.left.find_min_yf(X[guaranteed_left], y[guaranteed_left], eps)
uleft_min_yf = self.left.find_min_yf(X[uncertain], y[uncertain], eps)
if self.right is None:
right_min_yf = y[guaranteed_right] * rval
uright_min_yf = y[uncertain] * rval
else:
right_min_yf = self.right.find_min_yf(X[guaranteed_right], y[guaranteed_right], eps)
uright_min_yf = self.right.find_min_yf(X[uncertain], y[uncertain], eps)
min_yf = np.zeros(X.shape[0])
min_yf[guaranteed_left] = left_min_yf
min_yf[guaranteed_right] = right_min_yf
min_yf[uncertain] = np.minimum(uleft_min_yf, uright_min_yf)
return min_yf
def get_n_nodes(self):
left_n, right_n = 0, 0
if self.left is not None:
left_n = self.left.get_n_nodes()
if self.right is not None:
right_n = self.right.get_n_nodes()
subtree_n = left_n + right_n # n nodes of the subtree rooted at the current node
return subtree_n + 1 # which means that a decision stump is a tree of depth=1
def get_depth(self):
left_depth, right_depth = 0, 0
if self.left is not None:
left_depth = self.left.get_depth()
if self.right is not None:
right_depth = self.right.get_depth()
subtree_depth = max(left_depth, right_depth) # depth of the subtree rooted at the current node
return subtree_depth + 1 # which means that a decision stump is a tree of depth=1
def get_some_leaf(self):
if self.left is None and self.right is None:
return self
if self.left is not None:
return self.left.get_some_leaf()
if self.right is not None:
return self.right.get_some_leaf()
def rm_leaf(self, leaf_to_rm):
if self.left == leaf_to_rm:
self.left = None
if self.right == leaf_to_rm:
self.right = None
# Left-first search
if self.left is not None:
self.left.rm_leaf(leaf_to_rm)
if self.right is not None:
self.right.rm_leaf(leaf_to_rm)
def rm_bottom_layer(self, depth, max_depth):
if depth + 1 == max_depth:
# print('rm a node from depth {} (max_depth={})'.format(depth+1, max_depth))
self.left = None
self.right = None
if self.left is not None:
self.left.rm_bottom_layer(depth+1, max_depth)
if self.right is not None:
self.right.rm_bottom_layer(depth+1, max_depth)
def get_empty_leaf(self):
if self.left is not None:
return self.left.get_empty_leaf()
if self.right is not None:
return self.right.get_empty_leaf()
if self.left is None and self.right is None and self.w_l == 0.0 and self.w_r == 0.0:
return self
def get_json_dict(self, counter_terminal_nodes):
"""
counter_terminal_nodes: needed to assign nodeid's to terminal nodes (negative to prevent collisions)
"""
precision = 5
children_list = []
if self.left is None:
id_left = counter_terminal_nodes
counter_terminal_nodes -= 1
children_list.append({'nodeid': id_left, 'leaf': round(self.w_l, precision)}) # end node
else:
id_left = self.left.id
children, counter_terminal_nodes = self.left.get_json_dict(counter_terminal_nodes)
children_list.append(children)
if self.right is None:
id_right = counter_terminal_nodes
counter_terminal_nodes -= 1
children_list.append({'nodeid': id_right, 'leaf': round(self.w_l + self.w_r, precision)}) # end node
else:
id_right = self.right.id
children, counter_terminal_nodes = self.right.get_json_dict(counter_terminal_nodes)
children_list.append(children)
tree_dict = {'nodeid': self.id, 'split': 'f' + str(self.coord), 'split_condition': round(self.b, precision),
'yes': id_left, 'no': id_right, 'children': children_list}
return tree_dict, counter_terminal_nodes
class TreeEnsemble:
def __init__(self, weak_learner, n_trials_coord, lr, min_samples_split, min_samples_leaf, idx_clsf, max_depth,
gamma_hp=0.0, n_bins=-1, max_weight=1.0):
self.weak_learner = weak_learner
self.n_trials_coord = n_trials_coord
self.lr = lr
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.max_depth = max_depth
self.gamma_hp = gamma_hp # depth pruning coefficient
self.n_bins = n_bins
self.idx_clsf = idx_clsf # class index that this ensemble correspond to in the one-vs-all scheme
self.max_weight = max_weight
self.trees = []
self.coords_trees = OrderedDict()
self.ens_nodes_array = []
self.max_tree_node_id = 0
def __repr__(self):
sorted_trees = sorted(self.trees, key=lambda tree: tree.coord)
return '\n'.join([str(t) for t in sorted_trees])
def copy(self):
ensemble_new = TreeEnsemble(self.weak_learner, self.n_trials_coord, self.lr, self.min_samples_split,
self.min_samples_leaf, self.idx_clsf, self.max_depth, self.gamma_hp, self.n_bins,
self.max_weight)
for tree in self.trees:
ensemble_new.add_weak_learner(tree, apply_lr=False)
return ensemble_new
def load(self, ensemble_dict, iteration):
tree_indices = np.sort(list(ensemble_dict.keys())) # just a list of contiguous indices [0, 1, ..., n_trees]
if iteration != -1: # take only the tree ensemble up to a certain iteration
tree_indices = tree_indices[tree_indices <= iteration]
for i_tree in tree_indices:
# first create all tree nodes and maintain a dictionary with all nodes (for easier look-up later on)
node_dict = {}
for i_node in range(len(ensemble_dict[i_tree])):
if not np.all(ensemble_dict[i_tree][i_node] == 0):
id_, id_left, id_right, w_l, w_r, b, coord, loss = ensemble_dict[i_tree][i_node]
id_, id_left, id_right, coord = int(id_), int(id_left), int(id_right), int(coord)
# create a node, but without any connections to its children
tree = Tree(id_, None, None, w_l, w_r, b, coord, loss)
node_dict[id_] = (tree, id_left, id_right)
# then establish the right connections between the nodes of the tree
for node in node_dict:
tree, id_left, id_right = node_dict[node]
if id_left != -1:
tree.left = node_dict[id_left][0]
if id_right != -1:
tree.right = node_dict[id_right][0]
# add the root as the next element of the ensemble
if ensemble_dict[i_tree] != []:
root = node_dict[ensemble_dict[i_tree][0][0]][0]
self.add_weak_learner(root, apply_lr=False)
root.node_list = root.to_array_contiguous()
def export_model(self):
# note: every tree has potentially a different number of nodes, thus we save it in a dictionary
ensemble_dict = {}
for i, tree in enumerate(self.trees):
ensemble_dict[i] = np.array(tree.node_list) # all tree nodes are in this array
return ensemble_dict
def add_weak_learner(self, tree, apply_lr=True):
def adjust_lr(tree, lr):
""" Recursively goes over all node values and scales the weights by the learning rate. """
tree.w_l, tree.w_r = tree.w_l * lr, tree.w_r * lr
if tree.node_list != []: # i.e. if root
for node_tuple in tree.node_list:
node_tuple[3], node_tuple[4] = node_tuple[3] * lr, node_tuple[4] * lr
if tree.left is not None:
adjust_lr(tree.left, lr)
if tree.right is not None:
adjust_lr(tree.right, lr)
return tree
if tree is None: # can happen if no splits whatsoever were made
tree = Tree()
if apply_lr:
tree = adjust_lr(tree, self.lr)
self.trees.append(tree)
if tree.coord not in self.coords_trees:
self.coords_trees[tree.coord] = []
self.coords_trees[tree.coord].append(tree)
def predict(self, X):
f = np.zeros(X.shape[0])
for tree in self.trees:
f += tree.predict(X)
return f
def certify_treewise(self, X, y, eps):
lb_ensemble = np.zeros(X.shape[0])
for tree in self.trees:
lb_ensemble += tree.find_min_yf(X, y, eps)
return lb_ensemble
def prune_last_tree(self, X, y, margin_prev, eps, model):
"""
Recursive procedure for building a single tree.
Note: this function belongs to the tree, and not to the ensemble because the ensemble doesn't matter anymore
once the vector gamma is fixed.
"""
gamma = np.exp(-margin_prev)
loss_prev_ensemble = np.mean(gamma)
best_tree = copy.deepcopy(self.trees[-1]) # copy the whole tree since we will change its leaves
if model in ['plain', 'da_uniform', 'at_cube']:
best_loss = np.mean(gamma * np.exp(-y*best_tree.predict(X)))
elif model == 'robust_bound':
best_loss = np.mean(gamma * np.exp(-best_tree.find_min_yf(X, y, eps)))
else:
raise ValueError('wrong model type')
best_loss += self.gamma_hp * best_tree.get_depth() # introduce depth penalization
if best_loss < loss_prev_ensemble:
return
curr_tree = copy.deepcopy(best_tree)
# stop when best_loss is better than the previous loss or curr_tree became just a stump
while best_loss >= loss_prev_ensemble and not (curr_tree.left is None and curr_tree.right is None):
curr_tree.rm_leaf(curr_tree.get_some_leaf()) # gradual pruning
# curr_tree.rm_bottom_layer(depth=1, max_depth=curr_tree.get_depth()) # agressive pruning
curr_tree.node_list = curr_tree.to_array_contiguous()
if model in ['plain', 'da_uniform', 'at_cube']:
loss_pruned = np.mean(gamma * np.exp(-y * curr_tree.predict(X)))
elif model == 'robust_bound':
loss_pruned = np.mean(gamma * np.exp(-curr_tree.find_min_yf(X, y, eps)))
else:
raise ValueError('wrong model type')
loss_pruned += self.gamma_hp * curr_tree.get_depth() # introduce depth penalization
# print('{:.4f} {:.4f} {}'.format(loss_pruned, best_loss, curr_tree))
if loss_pruned < best_loss:
best_loss = loss_pruned
best_tree = copy.deepcopy(curr_tree)
# print('best loss: {:.4f}, best tree: {}'.format(best_loss, best_tree))
self.trees[-1] = best_tree
def fit_tree(self, X, y, gamma, model, eps, depth):
"""
Recursive procedure for building a single tree.
Returning None means that tree.left or tree.right will be set to None, i.e. no child.
TODO: the problem currently is that there is a minor memory leak in the current implementation. One can try to
get rid of it by rewriting this function in a non-recursive way (similarly to, e.g. how predict_point() is done)
"""
parallel = True # causes a minor memory leak; disable if the memory is limited
if depth == 1:
self.max_tree_node_id = 0 # if we start a new tree, set the counter to 0 (needed for efficient predict())
if depth > self.max_depth: # and (X.shape[0] <= 10000 or depth > 2*self.max_depth): # adaptive depth
return None
if X.shape[0] < self.min_samples_split:
return None
if (y == -1).all() or (y == 1).all(): # if already pure, don't branch anymore
return None
# create a new tree that will become a node (if further splits are needed)
# or a leaf (if max_depth or min_samples_leaf is reached)
w_l, w_r, b, coord, loss = self.fit_stumps_over_coords(X, y, gamma, model, eps, depth)
if coord == -1: # no further splits because min_samples_leaf is reached
return None
if loss >= np.mean(gamma): # if the stump doesn't help, don't add it at all; very unlikely situation
# print('Did not make this split since old_loss={:.4} <= new_loss={:.4}'.format(np.mean(gamma), loss))
return None
tree = Tree(self.max_tree_node_id, None, None, w_l, w_r, b, coord, loss)
self.max_tree_node_id += 1 # increment the counter
if model in ['plain', 'da_uniform', 'at_cube']:
idx_left = (X[:, tree.coord] < tree.b)
idx_right = (X[:, tree.coord] >= tree.b)
elif model == 'robust_bound':
idx_left = (X[:, tree.coord] < tree.b + eps)
idx_right = (X[:, tree.coord] >= tree.b - eps)
else:
raise ValueError('wrong model type')
if parallel and depth <= 4:
with ThreadPoolExecutor(max_workers=2) as executor:
proc_left = executor.submit(self.fit_tree, X[idx_left, :], y[idx_left], gamma[idx_left], model, eps, depth+1)
proc_right = executor.submit(self.fit_tree, X[idx_right, :], y[idx_right], gamma[idx_right], model, eps, depth+1)
tree.left = proc_left.result()
tree.right = proc_right.result()
else:
# print("left subtree: {:d} examples".format(np.sum(idx_left)))
tree.left = self.fit_tree(X[idx_left, :], y[idx_left], gamma[idx_left], model, eps, depth+1)
# print("right subtree: {:d} examples".format(np.sum(idx_right)))
tree.right = self.fit_tree(X[idx_right, :], y[idx_right], gamma[idx_right], model, eps, depth+1)
if depth == 1:
# a list of all nodes at the root is needed for fast parallel predictions
tree.node_list = tree.to_array_contiguous()
return tree
def fit_stumps_over_coords(self, X, y, gamma, model, eps, depth):
verbose = False
parallel = True
n_ex = X.shape[0]
X, y, gamma = X.astype(dtype), y.astype(dtype), gamma.astype(dtype)
prev_loss = np.mean(gamma)
# 151 features are always 0.0 on MNIST 2 vs 6. And this number is even higher for smaller subsets of MNIST,
# i.e. subsets of examples partitioned by tree splits.
idx_non_trivial = np.abs(X).sum(axis=0) > 0.0
features_to_check = np.random.permutation(np.where(idx_non_trivial)[0])[:self.n_trials_coord]
n_coords = len(features_to_check)
params, min_losses = np.zeros((n_coords, 4)), np.full(n_coords, np.inf)
if parallel:
n_proc = get_n_proc(n_ex)
n_proc = min(n_coords, min(100, n_proc))
batch_size = n_coords // n_proc
n_batches = n_coords // batch_size + 1
with ThreadPoolExecutor(max_workers=n_proc) as executor:
procs = []
for i_batch in range(n_batches):
coords = features_to_check[i_batch*batch_size:(i_batch+1)*batch_size]
args = (X[:, coords], y, gamma, model, eps, coords, self.n_bins, self.min_samples_leaf, self.max_weight)
procs.append(executor.submit(fit_stump_batch, *args))
# Process the results
i_coord = 0
for i_batch in range(n_batches):
res_many = procs[i_batch].result()
for res in res_many:
min_losses[i_coord], *params[i_coord, :] = res
i_coord += 1
else:
for i_coord, coord in enumerate(features_to_check):
min_losses[i_coord], *params[i_coord, :] = fit_stump(
X[:, coord], y, gamma, model, eps, coord, self.n_bins, self.min_samples_leaf, self.max_weight)
id_best_coord = min_losses.argmin()
min_loss = min_losses[id_best_coord]
best_coord = int(params[id_best_coord][3]) # float to int is necessary for a coordinate
best_wl, best_wr, best_b = params[id_best_coord][0], params[id_best_coord][1], np.float32(params[id_best_coord][2])
if verbose:
print('[{}-vs-all] depth {}: n_ex {}, n_coords {} -- loss {:.5f}->{:.5f}, b={:.3f} wl={:.3f} wr={:.3f} at coord {}'.format(
self.idx_clsf, depth, n_ex, n_coords, prev_loss, min_loss, best_b, best_wl, best_wr, best_coord))
return best_wl, best_wr, best_b, best_coord, min_loss
def fit_stump_batch(Xs, y, gamma, model, eps, coords, n_bins, min_samples_leaf, max_weight):
res = np.zeros([len(coords), 5])
for i, coord in enumerate(coords):
res[i] = fit_stump(Xs[:, i], y, gamma, model, eps, coord, n_bins, min_samples_leaf, max_weight)
return res
def fit_stump(X_proj, y, gamma, model, eps, coord, n_bins, min_samples_leaf, max_weight):
min_prec_val = 1e-7
min_val, max_val = 0.0, 1.0 # can be changed if the features are in a different range
if n_bins > 0:
if model == 'robust_bound':
# e.g. that's the thresholds that one gets with n_bins=10: [0.31, 0.41, 0.5, 0.59, 0.69]
b_vals = np.arange(eps*n_bins, n_bins - eps*n_bins + 1) / n_bins
# to have some margin to make the thresholds not adversarially reachable from 0 or 1
b_vals[b_vals < 0.5] += 0.1 * 1/n_bins
b_vals[b_vals > 0.5] -= 0.1 * 1/n_bins
else:
b_vals = np.arange(1, n_bins) / n_bins
else:
threshold_candidates = np.sort(X_proj)
if min_samples_leaf > 0:
threshold_candidates = threshold_candidates[min_samples_leaf:-min_samples_leaf]
if len(threshold_candidates) == 0: # if no samples left according to min_samples_leaf
return [np.inf, 0.0, 0.0, 0.0, -1]
if model not in ['robust_bound'] or eps == 0.0: # plain or da_uniform training
b_vals = np.copy(threshold_candidates)
b_vals += min_prec_val # to break the ties
else: # robust training
b_vals = np.concatenate((threshold_candidates - eps, threshold_candidates + eps), axis=0)
b_vals = np.clip(b_vals, min_val, max_val) # save computations (often goes 512 -> 360 thresholds on MNIST)
# to make in the overlapping case [---x-[--]-x---] output 2 different losses in the middle
n_bs = len(threshold_candidates)
b_vals += np.concatenate((-np.full(n_bs, min_prec_val), np.full(n_bs, min_prec_val)), axis=0)
b_vals = np.unique(b_vals) # use only unique b's
b_vals = np.sort(b_vals) # still important to sort because of the final threshold selection
if model in ['plain', 'da_uniform', 'at_cube']:
losses, w_l_vals, w_r_vals, b_vals = fit_plain_stumps(X_proj, y, gamma, b_vals, max_weight)
elif model == 'robust_bound':
losses, w_l_vals, w_r_vals, b_vals = fit_robust_bound_stumps(X_proj, y, gamma, b_vals, eps, max_weight)
else:
raise ValueError('wrong model')
min_loss = np.min(losses)
# probably, they are already sorted, but to be 100% sure since it is not explicitly mentioned in the docs
indices_opt_init = np.sort(np.where(losses == min_loss)[0])
indices_opt = get_contiguous_indices(indices_opt_init)
id_opt = indices_opt[len(indices_opt) // 2]
idx_prev = np.clip(indices_opt[0] - 1, 0, len(b_vals) - 1) # to prevent stepping out of the array
idx_next = np.clip(indices_opt[-1] + 1, 0, len(b_vals) - 1) # to prevent stepping out of the array
b_prev, w_l_prev, w_r_prev = b_vals[idx_prev], w_l_vals[idx_prev], w_r_vals[idx_prev]
b_next, w_l_next, w_r_next = b_vals[idx_next], w_l_vals[idx_next], w_r_vals[idx_next]
# initialization
b_leftmost, b_rightmost = b_vals[indices_opt[0]], b_vals[indices_opt[-1]]
if n_bins > 0: # note that one shouldn't average thresholds since it's unpredictable what is in between
return [min_loss, w_l_vals[id_opt], w_r_vals[id_opt], b_vals[id_opt], coord]
# more involved, since with +-eps, an additional check of the loss is needed
if model in ['plain', 'da_uniform', 'at_cube']:
b_rightmost = b_next
elif model in ['robust_bound']:
b_prev_half = (b_prev + b_vals[indices_opt[0]]) / 2
loss_prev_half = exp_loss_robust(X_proj, y, gamma, w_l_prev, w_r_prev, [], [], b_prev_half, eps, False)
b_next_half = (b_vals[indices_opt[-1]] + b_next) / 2
loss_next_half = exp_loss_robust(X_proj, y, gamma, w_l_next, w_r_next, [], [], b_next_half, eps, False)
# we extend the interval of the constant loss to the left and to the right if there the loss is
# the same at b_prev_half or b_next_half
if loss_prev_half == losses[id_opt]:
b_leftmost = b_prev
if loss_next_half == losses[id_opt]:
b_rightmost = b_next
else:
raise ValueError('wrong model')
# we put in the middle of the interval of the constant loss
b_opt = (b_leftmost + b_rightmost) / 2
# For the chosen threshold, we need to calculate w_l, w_r
# Some of w_l, w_r that correspond to min_loss may not be optimal anymore
b_val_final = np.array([b_opt])
if model in ['plain', 'da_uniform', 'at_cube']:
loss, w_l_opt, w_r_opt, _ = fit_plain_stumps(X_proj, y, gamma, b_val_final, max_weight)
elif model == 'robust_bound':
loss, w_l_opt, w_r_opt, _ = fit_robust_bound_stumps(X_proj, y, gamma, b_val_final, eps, max_weight)
else:
raise ValueError('wrong model')
loss, w_l_opt, w_r_opt = loss[0], w_l_opt[0], w_r_opt[0]
# recalculation of w_l, w_r shouldn't change the min loss
if np.abs(loss - min_loss) > 1e7:
print('New loss: {:.5f}, min loss before: {:.5f}'.format(loss, min_loss))
best_loss = losses[id_opt]
return [best_loss, w_l_opt, w_r_opt, b_opt, coord]