forked from sea-boat/DeepLearning-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convolution.py
36 lines (30 loc) · 1.27 KB
/
convolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import matplotlib.pyplot as plt
import imageio
import numpy as np
from collections import OrderedDict
kernels = OrderedDict({"Identity": [[0, 0, 0], [0., 1., 0.], [0., 0., 0.]],
"Laplacian": [[1., 2., 1.], [0., 0., 0.], [-1., -2., -1.]],
"Left Sobel": [[1., 0., -1.], [2., 0., -2.], [1., 0., -1.]],
"Upper Sobel": [[1., 2., 1.], [0., 0., 0.], [-1., -2., -1.]],
"Blur": [[1. / 16., 1. / 8., 1. / 16.], [1. / 8., 1. / 4., 1. / 8.],
[1. / 16., 1. / 8., 1. / 16.]]})
def apply3x3kernel(image, kernel):
newimage = np.array(image)
for m in range(1, image.shape[0] - 2):
for n in range(1, image.shape[1] - 2):
newelement = 0
for i in range(0, 3):
for j in range(0, 3):
newelement = newelement + image[m - 1 + i][n - 1 + j] * kernel[i][j]
newimage[m][n] = newelement
return newimage
arr = imageio.imread("data/dog.jpg")[:, :, 0].astype(np.float)
plt.figure(1)
j = 0
positions = [321, 322, 323, 324, 325, 326]
for key, value in kernels.items():
plt.subplot(positions[j])
out = apply3x3kernel(arr, value)
plt.imshow(out, cmap=plt.get_cmap('binary_r'))
j = j + 1
plt.show()