-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQ4_2.py
179 lines (162 loc) · 4.31 KB
/
Q4_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python
# -*- coding:utf-8 -*-
from glob import glob
from collections import defaultdict
import librosa
import numpy as np
from scipy.stats import pearsonr
# %%
import utils # self-defined utils.py file
DB = 'GTZAN'
if DB == 'GTZAN': # dataset with genre label classify at parent directory
FILES = glob(DB + '/wav/*/*.wav')
# print(FILES)
else:
FILES = glob(DB + '/wav/*.wav')
# print(FILES)
GENRE = [g.split('/')[2] for g in glob(DB + '/wav/*')]
print(GENRE)
n_fft = 100 # (ms)
hop_length = 25 # (ms)
# %% Q4_2
if DB == 'GTZAN':
label, pred = defaultdict(list), defaultdict(list)
else:
label, pred = list(), list()
chromagram = list()
gens = list()
for f in FILES:
f = f.replace('\\', '/')
print("file: ", f)
content = utils.read_keyfile(f, '*.lerch.txt')
if (int(content) < 0): continue # skip saving if key not found
if DB == 'GTZAN':
gen = f.split('/')[2]
label[gen].append(utils.LABEL[int(content)])
gens.append(gen)
else:
label.append(utils.LABEL[content])
sr, y = utils.read_wav(f)
gamma = 1000
# gamma = input("gamma (1, 10, 100, 1000): ")
cxx = np.log(1 + gamma * np.abs(librosa.feature.chroma_stft(y=y, sr=sr)))
chromagram.append(cxx) # store into list for further use
chroma_vector = np.sum(cxx, axis=1)
key_ind = np.where(chroma_vector == np.amax(chroma_vector))
key_ind = int(key_ind[0])
# print('key index: ', key_ind)
chroma_vector = utils.rotate(chroma_vector.tolist(), 12 - key_ind)
# print('chroma_vector: ', chroma_vector)
KS = {"major": [6.35, 2.23, 3.48, 2.33, 4.38, 4.09, 2.52, 5.19, 2.39, 3.66, 2.29, 2.88],
"minor": [6.33, 2.68, 3.52, 5.38, 2.60, 3.53, 2.54, 4.75, 3.98, 2.69, 3.34, 3.17]}
r_co_major = pearsonr(chroma_vector, KS["major"])
r_co_minor = pearsonr(chroma_vector, KS["minor"])
# print(r_co_major[0])
# print(r_co_minor[0])
mode = ''
if (r_co_major[0] > r_co_minor[0]):
mode = key_ind
else:
mode = key_ind + 12
mode = utils.lerch_to_str(mode)
# print('mode', mode)
if DB == 'GTZAN':
pred[gen].append(mode)
else:
pred.append('?') # you may ignore this when starting with GTZAN dataset
# print(pred[gen])
print("***** Q4_2 *****")
if DB == 'GTZAN':
label_list, pred_list = list(), list()
print("Genre \taccuracy")
for g in GENRE:
# TODO: Calculate the accuracy for each genre
# Hint: Use label[g] and pred[g]
correct = 0
for acc_len in range(len(label[g])):
if label[g][acc_len] == pred[g][acc_len]:
correct += 1
try:
acc = correct / len(label[g])
except ZeroDivisionError:
acc = 0
print("{:9s}\t{:8.2f}%".format(g, acc))
label_list += label[g]
pred_list += pred[g]
else:
label_list = label
pred_list = pred
# TODO: Calculate the accuracy for all file.
# Hint1: Use label_list and pred_list.
correct_all = 0
for acc_len in range(len(label_list)):
if label_list[acc_len] == pred_list[acc_len]:
correct_all += 1
try:
acc_all = correct_all / len(label_list)
except ZeroDivisionError:
acc_all = 0
##########
print("----------")
print("Overall accuracy:\t{:.2f}%".format(acc_all))
'''
GTZAN
***** Q4_2 *****
----------
gamma = 1
Genre accuracy
pop 0.43%
metal 0.26%
disco 0.32%
blues 0.17%
reggae 0.35%
classical -
rock 0.34%
hiphop 0.12%
country 0.31%
jazz 0.15%
Overall accuracy: 0.28%
----------
gamma = 10
Genre accuracy
pop 0.40%
metal 0.25%
disco 0.27%
blues 0.17%
reggae 0.31%
classical -
rock 0.33%
hiphop 0.15%
country 0.28%
jazz 0.14%
Overall accuracy: 0.26%
----------
gamma = 100
Genre accuracy
pop 0.37%
metal 0.25%
disco 0.27%
blues 0.20%
reggae 0.28%
classical -
rock 0.32%
hiphop 0.12%
country 0.28%
jazz 0.15%
Overall accuracy: 0.25%
----------
gamma = 1000
Genre accuracy
pop 0.37%
metal 0.25%
disco 0.26%
blues 0.21%
reggae 0.30%
classical -
rock 0.32%
hiphop 0.11%
country 0.29%
jazz 0.15%
Overall accuracy: 0.26%
----------
'''