-
Notifications
You must be signed in to change notification settings - Fork 1
/
rsdecoder.js
executable file
·178 lines (166 loc) · 5.21 KB
/
rsdecoder.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
Ported to JavaScript by Lazar Laszlo 2011
[email protected], www.lazarsoft.info
*/
/*
*
* Copyright 2007 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
function ReedSolomonDecoder(field)
{
this.field = field;
this.decode=function(received, twoS)
{
var poly = new GF256Poly(this.field, received);
var syndromeCoefficients = new Array(twoS);
for(var i=0;i<syndromeCoefficients.length;i++)syndromeCoefficients[i]=0;
var dataMatrix = false;//this.field.Equals(GF256.DATA_MATRIX_FIELD);
var noError = true;
for (var i = 0; i < twoS; i++)
{
// Thanks to sanfordsquires for this fix:
var eval = poly.evaluateAt(this.field.exp(dataMatrix?i + 1:i));
syndromeCoefficients[syndromeCoefficients.length - 1 - i] = eval;
if (eval != 0)
{
noError = false;
}
}
if (noError)
{
return ;
}
var syndrome = new GF256Poly(this.field, syndromeCoefficients);
var sigmaOmega = this.runEuclideanAlgorithm(this.field.buildMonomial(twoS, 1), syndrome, twoS);
var sigma = sigmaOmega[0];
var omega = sigmaOmega[1];
var errorLocations = this.findErrorLocations(sigma);
var errorMagnitudes = this.findErrorMagnitudes(omega, errorLocations, dataMatrix);
for (var i = 0; i < errorLocations.length; i++)
{
var position = received.length - 1 - this.field.log(errorLocations[i]);
if (position < 0)
{
throw "ReedSolomonException Bad error location";
}
received[position] = GF256.addOrSubtract(received[position], errorMagnitudes[i]);
}
}
this.runEuclideanAlgorithm=function( a, b, R)
{
// Assume a's degree is >= b's
if (a.Degree < b.Degree)
{
var temp = a;
a = b;
b = temp;
}
var rLast = a;
var r = b;
var sLast = this.field.One;
var s = this.field.Zero;
var tLast = this.field.Zero;
var t = this.field.One;
// Run Euclidean algorithm until r's degree is less than R/2
while (r.Degree >= Math.floor(R / 2))
{
var rLastLast = rLast;
var sLastLast = sLast;
var tLastLast = tLast;
rLast = r;
sLast = s;
tLast = t;
// Divide rLastLast by rLast, with quotient in q and remainder in r
if (rLast.Zero)
{
// Oops, Euclidean algorithm already terminated?
throw "r_{i-1} was zero";
}
r = rLastLast;
var q = this.field.Zero;
var denominatorLeadingTerm = rLast.getCoefficient(rLast.Degree);
var dltInverse = this.field.inverse(denominatorLeadingTerm);
while (r.Degree >= rLast.Degree && !r.Zero)
{
var degreeDiff = r.Degree - rLast.Degree;
var scale = this.field.multiply(r.getCoefficient(r.Degree), dltInverse);
q = q.addOrSubtract(this.field.buildMonomial(degreeDiff, scale));
r = r.addOrSubtract(rLast.multiplyByMonomial(degreeDiff, scale));
//r.EXE();
}
s = q.multiply1(sLast).addOrSubtract(sLastLast);
t = q.multiply1(tLast).addOrSubtract(tLastLast);
}
var sigmaTildeAtZero = t.getCoefficient(0);
if (sigmaTildeAtZero == 0)
{
throw "ReedSolomonException sigmaTilde(0) was zero";
}
var inverse = this.field.inverse(sigmaTildeAtZero);
var sigma = t.multiply2(inverse);
var omega = r.multiply2(inverse);
return new Array(sigma, omega);
}
this.findErrorLocations=function( errorLocator)
{
// This is a direct application of Chien's search
var numErrors = errorLocator.Degree;
if (numErrors == 1)
{
// shortcut
return new Array(errorLocator.getCoefficient(1));
}
var result = new Array(numErrors);
var e = 0;
for (var i = 1; i < 256 && e < numErrors; i++)
{
if (errorLocator.evaluateAt(i) == 0)
{
result[e] = this.field.inverse(i);
e++;
}
}
if (e != numErrors)
{
throw "Error locator degree does not match number of roots";
}
return result;
}
this.findErrorMagnitudes=function( errorEvaluator, errorLocations, dataMatrix)
{
// This is directly applying Forney's Formula
var s = errorLocations.length;
var result = new Array(s);
for (var i = 0; i < s; i++)
{
var xiInverse = this.field.inverse(errorLocations[i]);
var denominator = 1;
for (var j = 0; j < s; j++)
{
if (i != j)
{
denominator = this.field.multiply(denominator, GF256.addOrSubtract(1, this.field.multiply(errorLocations[j], xiInverse)));
}
}
result[i] = this.field.multiply(errorEvaluator.evaluateAt(xiInverse), this.field.inverse(denominator));
// Thanks to sanfordsquires for this fix:
if (dataMatrix)
{
result[i] = this.field.multiply(result[i], xiInverse);
}
}
return result;
}
}