-
Notifications
You must be signed in to change notification settings - Fork 1
/
ALD.py
389 lines (306 loc) · 14.1 KB
/
ALD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Define a class to receive the characteristics of each line detection
class Line():
def __init__(self):
# flag for new line
self.new_line = True
# was the line detected in the last iteration?
self.non_detect_tally = 0
self.non_detect_tally_max = 5
# self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
#average x values of the fitted line over the last n iterations
self.bestx = None
#polynomial coefficients averaged over the last n iterations
self.best_fit = None
#polynomial coefficients for the most recent fit
self.current_fit = [np.array([False])]
#radius of curvature of the line in some units
self.radius_of_curvature = None
#distance in meters of vehicle center from the line
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
#x values for detected line pixels
self.allx = None
#y values for detected line pixels
self.ally = None
self.ploty = []
# camera parameters
self.M = 0
self.Minv = 0
# windows
# Set the width of the windows +/- margin
self.margin = 50
# Set minimum number of pixels found to recenter window
self.minpix = 100
# Conversions in x and y from pixels space to meters
self.ym_per_pix = 30/720.0 # meters per pixel in y dimension
self.xm_per_pix = 3.7/700.0 # meters per pixel in x dimension
def perspective_transform(self, cols, rows):
rows = 0.9*rows
src_points = np.float32([[0.4*cols,0.6*rows],
[0*cols,rows],
[cols,rows],
[0.6*cols,0.6*rows]])
dst_points = np.float32([[0*cols,0*rows],
[0*cols,rows],
[cols,rows],
[cols,0*rows]])
# obtain perspective transform parameters
self.M = cv2.getPerspectiveTransform(src_points, dst_points)
self.Minv = cv2.getPerspectiveTransform(dst_points, src_points)
def thresh_bin_im(self, image):
"""
Return the colour thresholds binary for L, S and R channels in an image
img: RGB image
s_thresh: S channel threshold
sxl_thresh: sobel x threshold for L channel
sxr_thresh: sobel x threshold for R channel
"""
def bin_it(image, threshold):
output_bin = np.zeros_like(image)
output_bin[(image >= threshold[0]) & (image <= threshold[1])]=1
return output_bin
hls_im = cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
bin_thresh = [10, 255]
# rgb threshold for yellow
lower = np.array([140,110,0],dtype = "uint8")
upper = np.array([255, 255, 170],dtype = "uint8")
mask = cv2.inRange(image, lower, upper)
rgb_y = cv2.bitwise_and(image, image, mask = mask).astype(np.uint8)
rgb_y = cv2.cvtColor(rgb_y, cv2.COLOR_RGB2GRAY)
rgb_y = bin_it(rgb_y, bin_thresh)
# rgb for white (best)
lower = np.array([100,100,200],dtype = "uint8")
upper = np.array([255, 255, 255],dtype = "uint8")
mask = cv2.inRange(image, lower, upper)
rgb_w = cv2.bitwise_and(image, image, mask = mask).astype(np.uint8)
rgb_w = cv2.cvtColor(rgb_w, cv2.COLOR_RGB2GRAY)
rgb_w = bin_it(rgb_w, bin_thresh)
# hls yellow
lower = np.array([20,110,80],dtype = "uint8")
upper = np.array([44,150,255],dtype = "uint8")
mask = cv2.inRange(hls_im, lower, upper)
hls_y = cv2.bitwise_and(hls_im, hls_im, mask = mask).astype(np.uint8)
# hls_y = cv2.cvtColor(hls_y, cv2.COLOR_HLS2BGR)
hls_y = cv2.cvtColor(hls_y, cv2.COLOR_RGB2GRAY)
hls_y = bin_it(hls_y, bin_thresh)
im_bin = np.zeros_like(rgb_y).astype(np.uint8)
im_bin [(hls_y == 1)|(rgb_w==1)|(rgb_y==1)]= 1
return im_bin
def bin_image(self, image):
"""
convert colour binary image into a single channel binary image
image: array with 3 channels
return binary image with 1 channel which is a bitwise or operation of the original colour channels
"""
binary = np.zeros_like(image[:,:,1])
binary[(image[:,:,0] == 1) | (image[:,:,1]==1) |(image[:,:,2]==1)] = 1
return binary
def transform_n_warp(self, image):
"""
apply transforms to image and warp the image according to transformation matrix
image: image to be transformed
M: transformation matrix
"""
# image size
img_size = image.shape[:2][::-1]
self.perspective_transform(img_size[0], img_size[1])
# warp image
image = cv2.warpPerspective(image, self.M, img_size, flags=cv2.INTER_LINEAR)
# convert to coloured binary image
image = self.thresh_bin_im(image)
return image
def update_fit(self, left_fit, right_fit, patience=5):
"""
update the fit values for n iterations
"""
self.current_fit = [left_fit, right_fit]
self.recent_xfitted.append(self.current_fit)
if len(self.recent_xfitted) > patience:
self.recent_xfitted.pop(0)
# calculate best fit, mean of last n iterations determined by patience
self.best_fit = np.mean(self.recent_xfitted, axis=0)
return self.best_fit
# find lane function, with sliding window approach
def find_lane(self, warped):
"""
return image with lane lines using sliding window approach
warped: image in bird's eye view
"""
# check if there is a previous line
# if self.detected:
# self.new_line = False
# Set the width of the windows +/- margin
margin = self.margin
# Set minimum number of pixels found to recenter window
minpix = self.minpix
# Create an output image to draw on and visualize the result
out_img = np.dstack((warped, warped, warped)).astype(np.int8)#*255
window_img = np.zeros_like(out_img)
if self.new_line or self.non_detect_tally<self.non_detect_tally_max:
# we first take a histogram along all the columns in the lower half of the image
histogram = np.sum(warped[int(warped.shape[0]/2):,:], axis=0)
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]/2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# Number of sliding windows
nwindows = 9
# Height of windows
window_height = np.int(warped.shape[0]/nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = warped.shape[0] - (window+1)*window_height
win_y_high = warped.shape[0] - window*window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# # Draw the windows on the visualization image (not necessary here)
# cv2.rectangle(out_img,(win_xleft_low,win_y_low),(win_xleft_high,win_y_high),(0,255,0), 5)
# cv2.rectangle(out_img,(win_xright_low,win_y_low),(win_xright_high,win_y_high),(0,255,0), 5)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
self.new_line = False
else:
nonzero = warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_fit, right_fit = self.best_fit
left_lane_inds = ((nonzerox > (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0]*(nonzeroy**2) + left_fit[1]*nonzeroy + left_fit[2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0]*(nonzeroy**2) + right_fit[1]*nonzeroy + right_fit[2] + margin)))
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# update global left and right fits
left_fit, right_fit = self.update_fit(left_fit, right_fit)
# Generate x and y values for plotting
ploty = np.linspace(0, warped.shape[0]-1, warped.shape[0])
# save ploty
self.ploty = ploty
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
# change the colour of nonzero pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [100, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 100]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx-margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx+margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx-margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx+margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Define y-value where we want radius of curvature
# We choose the maximum y-value, corresponding to the bottom of the image
y_eval = np.max(ploty)
# left_fit, right_fit = self.best_fit
# left_curverad = ((1 + (2*left_fit[0]*y_eval + left_fit[1])**2)**1.5) / np.absolute(2*left_fit[0])
# right_curverad = ((1 + (2*right_fit[0]*y_eval + right_fit[1])**2)**1.5) / np.absolute(2*right_fit[0])
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty*self.ym_per_pix, left_fitx*self.xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty*self.ym_per_pix, right_fitx*self.xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad = ((1 + (2*left_fit_cr[0]*y_eval*self.ym_per_pix + left_fit_cr[1])**2)**1.5) / np.absolute(2*left_fit_cr[0])
right_curverad = ((1 + (2*right_fit_cr[0]*y_eval*self.ym_per_pix + right_fit_cr[1])**2)**1.5) / np.absolute(2*right_fit_cr[0])
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (255,255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0,255, 0))
# out_img = out_img.astype(np.int8)
result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0)
# %% Warp the detected lane boundaries back onto the original image
# # Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(result, np.int_([pts]), (0,255, 0))
return result, left_curverad, right_curverad
def display_on_frame(self, image, left_curverad, right_curverad, car_off):
"""
Display texts on image using passed values
"""
# create display texts on image
font = cv2.FONT_HERSHEY_COMPLEX
curve_disp_txt = 'Curvature: Right = ' + str(np.round(right_curverad,2)) + 'm, Left = ' + str(np.round(left_curverad,2)) + 'm'
off_disp_txt = 'Car off by ' + str(np.round(car_off,2)) + 'm'
cv2.putText(image, curve_disp_txt, (30, 60), font, 1, (0,0,0), 2)
cv2.putText(image, off_disp_txt, (30, 90), font, 1, (0,0,0), 2)
return image
def pipeline(self, original_frame):
# Changing the colour from BGR to RGB
frame = original_frame.copy()
"""
perform all advanced lane finding process on frame
and return processed frame
"""
# smooth the image using gaussian blur
frame = cv2.medianBlur(frame,3)
# undistort frame
#frame = cv2.undistort(frame, self.mtx, self.dst, None, self.mtx)
# transform image to bird's eye view
frame = self.transform_n_warp(frame)
# find lane lines
# Check that there is new line
# Then check that new line detections makes sense,
# i.e., expected curvature, separation, and parallel.
frame, left_curverad, right_curverad = self.find_lane(frame)
# print(left_curverad)
# print(right_curverad)
# print abs(left_curverad - right_curverad)
img_size = (frame.shape[:2][0], frame.shape[:2][1])
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(frame.astype(np.float32), self.Minv, img_size[::-1])
newwarp = np.uint8(newwarp)
# Combine the result with the original image
frame = cv2.addWeighted(original_frame, 1, newwarp, 0.6, 0)
# calculate lane midpoint
# left line intercept on x axis
left_fit, right_fit = self.best_fit
left_intcpt = left_fit[0]*img_size[1]**2 + left_fit[1]*img_size[1] + left_fit[2]
# right line intercept on x axis
right_intcpt = right_fit[0]*img_size[1]**2 + right_fit[1]*img_size[1] + right_fit[2]
lane_mid = (left_intcpt + right_intcpt)/2.0
car_off = lane_mid - img_size[1]/2.0
# convert to meters
car_off *= self.xm_per_pix
# display visuals on frame
frame = self.display_on_frame(frame, left_curverad=left_curverad, right_curverad=right_curverad,
car_off=car_off)
# return processed frame
ret_frame = frame
return ret_frame.astype(np.uint8)