forked from deweylab/RSEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsem-calculate-expression
executable file
·959 lines (682 loc) · 41.9 KB
/
rsem-calculate-expression
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
#!/usr/bin/env perl
use Getopt::Long;
use Pod::Usage;
use FindBin;
use lib $FindBin::RealBin;
use rsem_perl_utils qw(runCommand collectResults showVersionInfo);
use Env qw(@PATH);
@PATH = ($FindBin::RealBin, "$FindBin::RealBin/sam", @PATH);
use strict;
#const
my $BURNIN = 200;
my $NCV = 1000;
my $SAMPLEGAP = 1;
my $CONFIDENCE = 0.95;
my $NSPC = 50;
my $NMB = 1024; # default
my $SortMem = "1G"; # default as 1G per thread
my $status = 0;
my $read_type = 1; # default, single end with qual
my $bowtie_path = "";
my $C = 2;
my $E = 99999999;
my $L = 25;
my $maxHits = 200;
my $chunkMbs = 0; # 0 = use bowtie default
my $phred33 = 0;
my $phred64 = 0;
my $solexa = 0;
my $is_sam = 0;
my $is_bam = 0;
my $fn_list = "";
my $tagName = "XM";
my $probF = 0.5;
my $minL = 1;
my $maxL = 1000;
my $mean = -1;
my $sd = 0;
my $estRSPD = 0;
my $B = 20;
my $nThreads = 1;
my $genBamF = 1; # default is generating transcript bam file
my $genGenomeBamF = 0;
my $sampling = 0;
my $calcPME = 0;
my $calcCI = 0;
my $quiet = 0;
my $help = 0;
my $paired_end = 0;
my $no_qual = 0;
my $keep_intermediate_files = 0;
my $strand_specific = 0;
my $bowtie2 = 0;
my $bowtie2_path = "";
my $bowtie2_mismatch_rate = 0.1;
my $bowtie2_k = 200;
my $bowtie2_sensitivity_level = "sensitive"; # must be one of "very_fast", "fast", "sensitive", "very_sensitive"
my $seed = "NULL";
my $version = 0;
my $mTime = 0;
my ($time_start, $time_end, $time_alignment, $time_rsem, $time_ci) = (0, 0, 0, 0, 0);
my $mate1_list = "";
my $mate2_list = "";
my $inpF = "";
my ($refName, $sampleName, $sampleToken, $temp_dir, $stat_dir, $imdName, $statName) = ();
my $gap = 32;
my $alleleS = 0;
GetOptions("keep-intermediate-files" => \$keep_intermediate_files,
"temporary-folder=s" => \$temp_dir,
"no-qualities" => \$no_qual,
"paired-end" => \$paired_end,
"strand-specific" => \$strand_specific,
"sam" => \$is_sam,
"bam" => \$is_bam,
"sam-header-info=s" => \$fn_list,
"tag=s" => \$tagName,
"seed-length=i" => \$L,
"bowtie-path=s" => \$bowtie_path,
"bowtie-n=i" => \$C,
"bowtie-e=i" => \$E,
"bowtie-m=i" => \$maxHits,
"bowtie-chunkmbs=i" => \$chunkMbs,
"phred33-quals" => \$phred33,
"phred64-quals" => \$phred64, #solexa1.3-quals" => \$phred64,
"solexa-quals" => \$solexa,
"bowtie2" => \$bowtie2,
"bowtie2-path=s" => \$bowtie2_path,
"bowtie2-mismatch-rate=f" => \$bowtie2_mismatch_rate,
"bowtie2-k=i" => \$bowtie2_k,
"bowtie2-sensitivity-level=s" => \$bowtie2_sensitivity_level,
"forward-prob=f" => \$probF,
"fragment-length-min=i" => \$minL,
"fragment-length-max=i" => \$maxL,
"fragment-length-mean=f" => \$mean,
"fragment-length-sd=f" => \$sd,
"estimate-rspd" => \$estRSPD,
"num-rspd-bins=i" => \$B,
"p|num-threads=i" => \$nThreads,
"no-bam-output" => sub { $genBamF = 0; },
"output-genome-bam" => \$genGenomeBamF,
"sampling-for-bam" => \$sampling,
"calc-pme" => \$calcPME,
"gibbs-burnin=i" => \$BURNIN,
"gibbs-number-of-samples=i" => \$NCV,
"gibbs-sampling-gap=i", \$SAMPLEGAP,
"calc-ci" => \$calcCI,
"ci-credibility-level=f" => \$CONFIDENCE,
"ci-memory=i" => \$NMB,
"ci-number-of-samples-per-count-vector=i" => \$NSPC,
"samtools-sort-mem=s" => \$SortMem,
"seed=i" => \$seed,
"time" => \$mTime,
"version" => \$version,
"q|quiet" => \$quiet,
"h|help" => \$help) or pod2usage(-exitval => 2, -verbose => 2);
pod2usage(-verbose => 2) if ($help == 1);
&showVersionInfo($FindBin::RealBin) if ($version == 1);
#check parameters and options
if ($is_sam || $is_bam) {
pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (scalar(@ARGV) != 3);
pod2usage(-msg => "--sam and --bam cannot be active at the same time!", -exitval => 2, -verbose => 2) if ($is_sam == 1&& $is_bam == 1);
pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m, --phred33-quals, --phred64-quals, --solexa-quals, --bowtie2, --bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k and --bowtie2-sensitivity-level cannot be set if input is SAM/BAM format!", -exitval => 2, -verbose => 2) if ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200 || $phred33 || $phred64 || $solexa || $bowtie2 || $bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive");
}
else {
pod2usage(-msg => "Invalid number of arguments!", -exitval => 2, -verbose => 2) if (!$paired_end && scalar(@ARGV) != 3 || $paired_end && scalar(@ARGV) != 4);
pod2usage(-msg => "If --no-qualities is set, neither --phred33-quals, --phred64-quals or --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($no_qual && ($phred33 + $phred64 + $solexa > 0));
pod2usage(-msg => "Only one of --phred33-quals, --phred64-quals, and --solexa-quals can be active!", -exitval => 2, -verbose => 2) if ($phred33 + $phred64 + $solexa > 1);
pod2usage(-msg => "--sam , --bam or --sam-header-info cannot be set if use bowtie/bowtie2 aligner to produce alignments!", -exitval => 2, -verbose => 2) if ($is_sam || $is_bam || $fn_list ne "");
pod2usage(-msg => "--bowtie2-path, --bowtie2-mismatch-rate, --bowtie2-k and --bowtie2-sensitivity-level cannot be set if bowtie aligner is used!", -exitval => 2, -verbose => 2) if (!$bowtie2 && ($bowtie2_path ne "" || $bowtie2_mismatch_rate != 0.1 || $bowtie2_k != 200 || $bowtie2_sensitivity_level ne "sensitive"));
pod2usage(-msg => "--bowtie-path, --bowtie-n, --bowtie-e, --bowtie-m cannot be set if bowtie2 aligner is used!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie_path ne "" || $C != 2 || $E != 99999999 || $maxHits != 200));
pod2usage(-msg => "Mismatch rate must be within [0, 1]!", -exitval => 2, -verbose => 2) if ($bowtie2 && ($bowtie2_mismatch_rate < 0.0 || $bowtie2_mismatch_rate > 1.0));
pod2usage(-msg => "Sensitivity level must be one of \"very_fast\", \"fast\", \"sensitive\", and \"very_sensitive\"!", -exitval => 2, -verbose => 2) if ($bowtie2 && (($bowtie2_sensitivity_level ne "very_fast") && ($bowtie2_sensitivity_level ne "fast") && ($bowtie2_sensitivity_level ne "sensitive") && ($bowtie2_sensitivity_level ne "very_sensitive")));
}
pod2usage(-msg => "Forward probability should be in [0, 1]!", -exitval => 2, -verbose => 2) if ($probF < 0 || $probF > 1);
pod2usage(-msg => "Min fragment length should be at least 1!", -exitval => 2, -verbose => 2) if ($minL < 1);
pod2usage(-msg => "Min fragment length should be smaller or equal to max fragment length!", -exitval => 2, -verbose => 2) if ($minL > $maxL);
pod2usage(-msg => "The memory allocated for calculating credibility intervals should be at least 1 MB!\n", -exitval => 2, -verbose => 2) if ($NMB < 1);
pod2usage(-msg => "Number of threads should be at least 1!\n", -exitval => 2, -verbose => 2) if ($nThreads < 1);
pod2usage(-msg => "Seed length should be at least 5!\n", -exitval => 2, -verbose => 2) if ($L < 5);
pod2usage(-msg => "--sampling-for-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($sampling && !$genBamF);
pod2usage(-msg => "--output-genome-bam cannot be specified if --no-bam-output is specified!\n", -exitval => 2, -verbose => 2) if ($genGenomeBamF && !$genBamF);
pod2usage(-msg => "The seed for random number generator must be a non-negative 32bit integer!\n", -exitval => 2, -verbose => 2) if (($seed ne "NULL") && ($seed < 0 || $seed > 0xffffffff));
pod2usage(-msg => "The credibility level should be within (0, 1)!\n", -exitval => 2, -verbose => 2) if ($CONFIDENCE <= 0.0 || $CONFIDENCE >= 1.0);
if ($L < 25) { print "Warning: the seed length set is less than 25! This is only allowed if the references are not added poly(A) tails.\n"; }
if ($strand_specific) { $probF = 1.0; }
if ($paired_end) {
if ($no_qual) { $read_type = 2; }
else { $read_type = 3; }
}
else {
if ($no_qual) { $read_type = 0; }
else { $read_type = 1; }
}
if (scalar(@ARGV) == 3) {
if ($is_sam || $is_bam) { $inpF = $ARGV[0]; }
else {$mate1_list = $ARGV[0]; }
$refName = $ARGV[1];
$sampleName = $ARGV[2];
}
else {
$mate1_list = $ARGV[0];
$mate2_list = $ARGV[1];
$refName = $ARGV[2];
$sampleName = $ARGV[3];
}
if (((-e "$refName.ta") && !(-e "$refName.gt")) || (!(-e "$refName.ta") && (-e "$refName.gt"))) {
print "Allele-specific expression related reference files are corrupted!\n";
exit(-1);
}
$alleleS = (-e "$refName.ta") && (-e "$refName.gt");
if ($genGenomeBamF) {
open(INPUT, "$refName.ti");
my $line = <INPUT>; chomp($line);
close(INPUT);
my ($M, $type) = split(/ /, $line);
pod2usage(-msg => "No genome information provided, so genome bam file cannot be generated!\n", -exitval => 2, -verbose => 2) if ($type != 0);
}
my $pos = rindex($sampleName, '/');
if ($pos < 0) { $sampleToken = $sampleName; }
else { $sampleToken = substr($sampleName, $pos + 1); }
if ($temp_dir eq "") { $temp_dir = "$sampleName.temp"; }
$stat_dir = "$sampleName.stat";
if (!(-d $temp_dir) && !mkdir($temp_dir)) { print "Fail to create folder $temp_dir.\n"; exit(-1); }
if (!(-d $stat_dir) && !mkdir($stat_dir)) { print "Fail to create folder $stat_dir.\n"; exit(-1); }
$imdName = "$temp_dir/$sampleToken";
$statName = "$stat_dir/$sampleToken";
if (!$is_sam && !$is_bam && !$no_qual && ($phred33 + $phred64 + $solexa == 0)) { $phred33 = 1; }
my ($mate_minL, $mate_maxL) = (1, $maxL);
if ($bowtie_path ne "") { $bowtie_path .= "/"; }
if ($bowtie2_path ne "") { $bowtie2_path .= "/"; }
my $command = "";
if (!$is_sam && !$is_bam) {
if (!$bowtie2) {
$command = $bowtie_path."bowtie";
if ($no_qual) { $command .= " -f"; }
else { $command .= " -q"; }
if ($phred33) { $command .= " --phred33-quals"; }
elsif ($phred64) { $command .= " --phred64-quals"; }
elsif ($solexa) { $command .= " --solexa-quals"; }
$command .= " -n $C -e $E -l $L";
if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL"; }
if ($chunkMbs > 0) { $command .= " --chunkmbs $chunkMbs"; }
if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
elsif ($probF == 0.0) { $command .= " --nofw"; }
$command .= " -p $nThreads -a -m $maxHits -S";
if ($quiet) { $command .= " --quiet"; }
$command .= " $refName";
if ($read_type == 0 || $read_type == 1) {
$command .= " $mate1_list";
}
else {
$command .= " -1 $mate1_list -2 $mate2_list";
}
# pipe to samtools to generate a BAM file
$command .= " | samtools view -S -b -o $imdName.bam -";
}
else {
$command = $bowtie2_path."bowtie2";
if ($no_qual) { $command .= " -f"; }
else { $command .= " -q"; }
if ($phred33) { $command .= " --phred33"; }
elsif ($phred64) { $command .= " --phred64"; }
elsif ($solexa) { $command .= " --solexa-quals"; }
if ($bowtie2_sensitivity_level eq "very_fast") { $command .= " --very-fast"; }
elsif ($bowtie2_sensitivity_level eq "fast") { $command .= " --fast"; }
elsif ($bowtie2_sensitivity_level eq "sensitive") { $command .= " --sensitive"; }
else { $command .= " --very-sensitive"; }
$command .= " --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-$bowtie2_mismatch_rate";
if ($read_type == 2 || $read_type == 3) { $command .= " -I $minL -X $maxL --no-mixed --no-discordant"; }
if ($strand_specific || $probF == 1.0) { $command .= " --norc"; }
elsif ($probF == 0.0) { $command .= " --nofw"; }
$command .= " -p $nThreads -k $bowtie2_k";
if ($quiet) { $command .= " --quiet"; }
$command .= " -x $refName";
if ($read_type == 0 || $read_type == 1) {
$command .= " -U $mate1_list";
}
else {
$command .= " -1 $mate1_list -2 $mate2_list";
}
# pipe to samtools to generate a BAM file
$command .= " | samtools view -S -b -o $imdName.bam -";
}
if ($mTime) { $time_start = time(); }
&runCommand($command);
if ($mTime) { $time_end = time(); $time_alignment = $time_end - $time_start; }
$inpF = "$imdName.bam";
$is_bam = 1; # alignments are outputed as a BAM file
}
if ($mTime) { $time_start = time(); }
$command = "rsem-parse-alignments $refName $imdName $statName";
my $samInpType;
if ($is_sam) { $samInpType = "s"; }
elsif ($is_bam) { $samInpType = "b"; }
$command .= " $samInpType $inpF -t $read_type";
if ($fn_list ne "") { $command .= " -l $fn_list"; }
if ($tagName ne "") { $command .= " -tag $tagName"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
$command = "rsem-build-read-index $gap";
if ($read_type == 0) { $command .= " 0 $quiet $imdName\_alignable.fa"; }
elsif ($read_type == 1) { $command .= " 1 $quiet $imdName\_alignable.fq"; }
elsif ($read_type == 2) { $command .= " 0 $quiet $imdName\_alignable_1.fa $imdName\_alignable_2.fa"; }
elsif ($read_type == 3) { $command .= " 1 $quiet $imdName\_alignable_1.fq $imdName\_alignable_2.fq"; }
else { print "Impossible! read_type is not in [1,2,3,4]!\n"; exit(-1); }
&runCommand($command);
my $doesOpen = open(OUTPUT, ">$imdName.mparams");
if ($doesOpen == 0) { print "Cannot generate $imdName.mparams!\n"; exit(-1); }
print OUTPUT "$minL $maxL\n";
print OUTPUT "$probF\n";
print OUTPUT "$estRSPD\n";
print OUTPUT "$B\n";
print OUTPUT "$mate_minL $mate_maxL\n";
print OUTPUT "$mean $sd\n";
print OUTPUT "$L\n";
close(OUTPUT);
my @seeds = ();
if ($seed ne "NULL") {
srand($seed);
for (my $i = 0; $i < 3; $i++) {
push(@seeds, int(rand(1 << 32)));
}
}
$command = "rsem-run-em $refName $read_type $sampleName $imdName $statName -p $nThreads";
if ($genBamF) {
$command .= " -b $samInpType $inpF";
if ($fn_list ne "") { $command .= " 1 $fn_list"; }
else { $command .= " 0"; }
if ($sampling) { $command .= " --sampling"; }
if ($seed ne "NULL") { $command .= " --seed $seeds[0]"; }
}
if ($calcPME || $calcCI) { $command .= " --gibbs-out"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
if ($alleleS) {
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
if ($genBamF) {
$command = "samtools sort -@ $nThreads -m $SortMem $sampleName.transcript.bam $sampleName.transcript.sorted";
&runCommand($command);
$command = "samtools index $sampleName.transcript.sorted.bam";
&runCommand($command);
if ($genGenomeBamF) {
$command = "rsem-tbam2gbam $refName $sampleName.transcript.bam $sampleName.genome.bam";
&runCommand($command);
$command = "samtools sort -@ $nThreads -m $SortMem $sampleName.genome.bam $sampleName.genome.sorted";
&runCommand($command);
$command = "samtools index $sampleName.genome.sorted.bam";
&runCommand($command);
}
}
if ($mTime) { $time_end = time(); $time_rsem = $time_end - $time_start; }
if ($mTime) { $time_start = time(); }
if ($calcPME || $calcCI ) {
$command = "rsem-run-gibbs $refName $imdName $statName $BURNIN $NCV $SAMPLEGAP";
$command .= " -p $nThreads";
if ($seed ne "NULL") { $command .= " --seed $seeds[1]"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
}
if ($calcPME || $calcCI) {
if ($alleleS) {
system("mv $sampleName.alleles.results $imdName.alleles.results.bak1");
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
system("mv $sampleName.genes.results $imdName.genes.results.bak1");
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak1");
system("mv $sampleName.genes.results $imdName.genes.results.bak1");
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
}
if ($calcCI) {
$command = "rsem-calculate-credibility-intervals $refName $imdName $statName $CONFIDENCE $NCV $NSPC $NMB";
$command .= " -p $nThreads";
if ($seed ne "NULL") { $command .= " --seed $seeds[2]"; }
if ($quiet) { $command .= " -q"; }
&runCommand($command);
if ($alleleS) {
system("mv $sampleName.alleles.results $imdName.alleles.results.bak2");
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
system("mv $sampleName.genes.results $imdName.genes.results.bak2");
&collectResults("allele", "$imdName.allele_res", "$sampleName.alleles.results"); # allele level
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
else {
system("mv $sampleName.isoforms.results $imdName.isoforms.results.bak2");
system("mv $sampleName.genes.results $imdName.genes.results.bak2");
&collectResults("isoform", "$imdName.iso_res", "$sampleName.isoforms.results"); # isoform level
&collectResults("gene", "$imdName.gene_res", "$sampleName.genes.results"); # gene level
}
}
if ($mTime) { $time_end = time(); $time_ci = $time_end - $time_start; }
if ($mTime) { $time_start = time(); }
if (!$keep_intermediate_files) {
&runCommand("rm -rf $temp_dir", "Fail to delete the temporary folder!");
}
if ($mTime) { $time_end = time(); }
if ($mTime) {
open(OUTPUT, ">$sampleName.time");
print OUTPUT "Aligning reads: $time_alignment s.\n";
print OUTPUT "Estimating expression levels: $time_rsem s.\n";
print OUTPUT "Calculating credibility intervals: $time_ci s.\n";
# my $time_del = $time_end - $time_start;
# print OUTPUT "Delete: $time_del s.\n";
close(OUTPUT);
}
__END__
=head1 NAME
rsem-calculate-expression
=head1 SYNOPSIS
rsem-calculate-expression [options] upstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --paired-end upstream_read_file(s) downstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --sam/--bam [--paired-end] input reference_name sample_name
=head1 ARGUMENTS
=over
=item B<upstream_read_files(s)>
Comma-separated list of files containing single-end reads or upstream reads for paired-end data. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected.
=item B<downstream_read_file(s)>
Comma-separated list of files containing downstream reads which are paired with the upstream reads. By default, these files are assumed to be in FASTQ format. If the --no-qualities option is specified, then FASTA format is expected.
=item B<input>
SAM/BAM formatted input file. If "-" is specified for the filename, SAM/BAM input is instead assumed to come from standard input. RSEM requires all alignments of the same read group together. For paired-end reads, RSEM also requires the two mates of any alignment be adjacent. See Description section for how to make input file obey RSEM's requirements.
=item B<reference_name>
The name of the reference used. The user must have run 'rsem-prepare-reference' with this reference_name before running this program.
=item B<sample_name>
The name of the sample analyzed. All output files are prefixed by this name (e.g., sample_name.genes.results)
=back
=head1 BASIC OPTIONS
=over
=item B<--paired-end>
Input reads are paired-end reads. (Default: off)
=item B<--no-qualities>
Input reads do not contain quality scores. (Default: off)
=item B<--strand-specific>
The RNA-Seq protocol used to generate the reads is strand specific, i.e., all (upstream) reads are derived from the forward strand. This option is equivalent to --forward-prob=1.0. With this option set, if RSEM runs the Bowtie/Bowtie 2 aligner, the '--norc' Bowtie/Bowtie 2 option will be used, which disables alignment to the reverse strand of transcripts. (Default: off)
=item B<--bowtie2>
Use Bowtie 2 instead of Bowtie to align reads. Since currently RSEM does not handle indel, local and discordant alignments, the Bowtie2 parameters are set in a way to avoid those alignments. In particular, we use options '--sensitive --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.1' by default. "-0.1", the last parameter of '--score-min' is the negative value of the maximum mismatch rate allowed. This rate can be set by option '--bowtie2-mismatch-rate'. If reads are paired-end, we additionally use options '--no-mixed' and '--no-discordant'. (Default: off)
=item B<--sam>
Input file is in SAM format. (Default: off)
=item B<--bam>
Input file is in BAM format. (Default: off)
=item B<-p/--num-threads> <int>
Number of threads to use. Both Bowtie/Bowtie2, expression estimation and 'samtools sort' will use this many threads. (Default: 1)
=item B<--no-bam-output>
Do not output any BAM file. (Default: off)
=item B<--output-genome-bam>
Generate a BAM file, 'sample_name.genome.bam', with alignments mapped to genomic coordinates and annotated with their posterior probabilities. In addition, RSEM will call samtools (included in RSEM package) to sort and index the bam file. 'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' will be generated. (Default: off)
=item B<--sampling-for-bam>
When RSEM generates a BAM file, instead of outputing all alignments a read has with their posterior probabilities, one alignment is sampled according to the posterior probabilities. The sampling procedure includes the alignment to the "noise" transcript, which does not appear in the BAM file. Only the sampled alignment has a weight of 1. All other alignments have weight 0. If the "noise" transcript is sampled, all alignments appeared in the BAM file should have weight 0. (Default: off)
=item B<--seed> <uint32>
Set the seed for the random number generators used in calculating posterior mean estimates and credibility intervals. The seed must be a non-negative 32 bit interger. (Default: off)
=item B<--calc-pme>
Run RSEM's collapsed Gibbs sampler to calculate posterior mean estimates. (Default: off)
=item B<--calc-ci>
Calculate 95% credibility intervals and posterior mean estimates. The credibility level can be changed by setting '--ci-credibility-level'. (Default: off)
=item B<-q/--quiet>
Suppress the output of logging information. (Default: off)
=item B<-h/--help>
Show help information.
=item B<--version>
Show version information.
=back
=head1 ADVANCED OPTIONS
=over
=item B<--sam-header-info> <file>
RSEM reads header information from input by default. If this option is on, header information is read from the specified file. For the format of the file, please see SAM official website. (Default: "")
=item B<--seed-length> <int>
Seed length used by the read aligner. Providing the correct value is important for RSEM. If RSEM runs Bowtie, it uses this value for Bowtie's seed length parameter. Any read with its or at least one of its mates' (for paired-end reads) length less than this value will be ignored. If the references are not added poly(A) tails, the minimum allowed value is 5, otherwise, the minimum allowed value is 25. Note that this script will only check if the value >= 5 and give a warning message if the value < 25 but >= 5. (Default: 25)
=item B<--tag> <string>
The name of the optional field used in the SAM input for identifying a read with too many valid alignments. The field should have the format <tagName>:i:<value>, where a <value> bigger than 0 indicates a read with too many alignments. (Default: "")
=item B<--bowtie-path> <path>
The path to the Bowtie executables. (Default: the path to the Bowtie executables is assumed to be in the user's PATH environment variable)
=item B<--bowtie-n> <int>
(Bowtie parameter) max # of mismatches in the seed. (Range: 0-3, Default: 2)
=item B<--bowtie-e> <int>
(Bowtie parameter) max sum of mismatch quality scores across the alignment. (Default: 99999999)
=item B<--bowtie-m> <int>
(Bowtie parameter) suppress all alignments for a read if > <int> valid alignments exist. (Default: 200)
=item B<--bowtie-chunkmbs> <int>
(Bowtie parameter) memory allocated for best first alignment calculation (Default: 0 - use Bowtie's default)
=item B<--phred33-quals>
Input quality scores are encoded as Phred+33. (Default: on)
=item B<--phred64-quals>
Input quality scores are encoded as Phred+64 (default for GA Pipeline ver. >= 1.3). (Default: off)
=item B<--solexa-quals>
Input quality scores are solexa encoded (from GA Pipeline ver. < 1.3). (Default: off)
=item B<--bowtie2-path> <path>
(Bowtie 2 parameter) The path to the Bowtie 2 executables. (Default: the path to the Bowtie 2 executables is assumed to be in the user's PATH environment variable)
=item B<--bowtie2-mismatch-rate> <double>
(Bowtie 2 parameter) The maximum mismatch rate allowed. (Default: 0.1)
=item B<--bowtie2-k> <int>
(Bowtie 2 parameter) Find up to <int> alignments per read. (Default: 200)
=item B<--bowtie2-sensitivity-level> <string>
(Bowtie 2 parameter) Set Bowtie 2's preset options in --end-to-end mode. This option controls how hard Bowtie 2 tries to find alignments. <string> must be one of "very_fast", "fast", "sensitive" and "very_sensitive". The four candidates correspond to Bowtie 2's "--very-fast", "--fast", "--sensitive" and "--very-sensitive" options. (Default: "sensitive" - use Bowtie 2's default)
=item B<--forward-prob> <double>
Probability of generating a read from the forward strand of a transcript. Set to 1 for a strand-specific protocol where all (upstream) reads are derived from the forward strand, 0 for a strand-specific protocol where all (upstream) read are derived from the reverse strand, or 0.5 for a non-strand-specific protocol. (Default: 0.5)
=item B<--fragment-length-min> <int>
Minimum read/insert length allowed. This is also the value for the Bowtie/Bowtie2 -I option. (Default: 1)
=item B<--fragment-length-max> <int>
Maximum read/insert length allowed. This is also the value for the Bowtie/Bowtie 2 -X option. (Default: 1000)
=item B<--fragment-length-mean> <double>
(single-end data only) The mean of the fragment length distribution, which is assumed to be a Gaussian. (Default: -1, which disables use of the fragment length distribution)
=item B<--fragment-length-sd> <double>
(single-end data only) The standard deviation of the fragment length distribution, which is assumed to be a Gaussian. (Default: 0, which assumes that all fragments are of the same length, given by the rounded value of B<--fragment-length-mean>)
=item B<--estimate-rspd>
Set this option if you want to estimate the read start position distribution (RSPD) from data. Otherwise, RSEM will use a uniform RSPD. (Default: off)
=item B<--num-rspd-bins> <int>
Number of bins in the RSPD. Only relevant when '--estimate-rspd' is specified. Use of the default setting is recommended. (Default: 20)
=item B<--gibbs-burnin> <int>
The number of burn-in rounds for RSEM's Gibbs sampler. Each round passes over the entire data set once. If RSEM can use multiple threads, multiple Gibbs samplers will start at the same time and all samplers share the same burn-in number. (Default: 200)
=item B<--gibbs-number-of-samples> <int>
The total number of count vectors RSEM will collect from its Gibbs samplers. (Default: 1000)
=item B<--gibbs-sampling-gap> <int>
The number of rounds between two succinct count vectors RSEM collects. If the count vector after round N is collected, the count vector after round N + <int> will also be collected. (Default: 1)
=item B<--ci-credibility-level> <double>
The credibility level for credibility intervals. (Default: 0.95)
=item B<--ci-memory> <int>
Maximum size (in memory, MB) of the auxiliary buffer used for computing credibility intervals (CI). Set it larger for a faster CI calculation. However, leaving 2 GB memory free for other usage is recommended. (Default: 1024)
=item B<--ci-number-of-samples-per-count-vector> <int>
The number of read generating probability vectors sampled per sampled count vector. The crebility intervals are calculated by first sampling P(C | D) and then sampling P(Theta | C) for each sampled count vector. This option controls how many Theta vectors are sampled per sampled count vector. (Default: 50)
=item B<--samtools-sort-mem> <string>
Set the maximum memory per thread that can be used by 'samtools sort'. <string> represents the memory and accepts suffices 'K/M/G'. RSEM will pass <string> to the '-m' option of 'samtools sort'. Please note that the default used here is different from the default used by samtools. (Default: 1G)
=item B<--keep-intermediate-files>
Keep temporary files generated by RSEM. RSEM creates a temporary directory, 'sample_name.temp', into which it puts all intermediate output files. If this directory already exists, RSEM overwrites all files generated by previous RSEM runs inside of it. By default, after RSEM finishes, the temporary directory is deleted. Set this option to prevent the deletion of this directory and the intermediate files inside of it. (Default: off)
=item B<--temporary-folder> <string>
Set where to put the temporary files generated by RSEM. If the folder specified does not exist, RSEM will try to create it. (Default: sample_name.temp)
=item B<--time>
Output time consumed by each step of RSEM to 'sample_name.time'. (Default: off)
=back
=head1 DESCRIPTION
In its default mode, this program aligns input reads against a reference transcriptome with Bowtie and calculates expression values using the alignments. RSEM assumes the data are single-end reads with quality scores, unless the '--paired-end' or '--no-qualities' options are specified. Users may use an alternative aligner by specifying one of the --sam and --bam options, and providing an alignment file in the specified format. However, users should make sure that they align against the indices generated by 'rsem-prepare-reference' and the alignment file satisfies the requirements mentioned in ARGUMENTS section.
One simple way to make the alignment file satisfying RSEM's requirements (assuming the aligner used put mates in a paired-end read adjacent) is to use 'convert-sam-for-rsem' script. This script only accept SAM format files as input. If a BAM format file is obtained, please use samtools to convert it to a SAM file first. For example, if '/ref/mouse_125' is the 'reference_name' and the SAM file is named 'input.sam', you can run the following command:
convert-sam-for-rsem /ref/mouse_125 input.sam -o input_for_rsem.sam
For details, please refer to 'convert-sam-for-rsem's documentation page.
The SAM/BAM format RSEM uses is v1.4. However, it is compatible with old SAM/BAM format. However, RSEM cannot recognize 0x100 in the FLAG field. In addition, RSEM requires SEQ and QUAL are not '*'.
The user must run 'rsem-prepare-reference' with the appropriate reference before using this program.
For single-end data, it is strongly recommended that the user provide the fragment length distribution parameters (--fragment-length-mean and --fragment-length-sd). For paired-end data, RSEM will automatically learn a fragment length distribution from the data.
Please note that some of the default values for the Bowtie parameters are not the same as those defined for Bowtie itself.
The temporary directory and all intermediate files will be removed when RSEM finishes unless '--keep-intermediate-files' is specified.
With the '--calc-ci' option, 95% credibility intervals and posterior mean estimates will be calculated in addition to maximum likelihood estimates.
=head1 OUTPUT
=over
=item B<sample_name.isoforms.results>
File containing isoform level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM IsoPct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound FPKM_ci_lower_bound FPKM_ci_upper_bound]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'transcript_id' is the transcript name of this transcript. 'gene_id'
is the gene name of the gene which this transcript belongs to (denote
this gene as its parent gene). If no gene information is provided,
'gene_id' and 'transcript_id' are the same.
'length' is this transcript's sequence length (poly(A) tail is not
counted). 'effective_length' counts only the positions that can
generate a valid fragment. If no poly(A) tail is added,
'effective_length' is equal to transcript length - mean fragment
length + 1. If one transcript's effective length is less than 1, this
transcript's both effective length and abundance estimates are set to
0.
'expected_count' is the sum of the posterior probability of each read
comes from this transcript over all reads. Because 1) each read
aligning to this transcript has a probability of being generated from
background noise; 2) RSEM may filter some alignable low quality reads,
the sum of expected counts for all transcript are generally less than
the total number of reads aligned.
'TPM' stands for Transcripts Per Million. It is a relative measure of
transcript abundance. The sum of all transcripts' TPM is 1
million. 'FPKM' stands for Fragments Per Kilobase of transcript per
Million mapped reads. It is another relative measure of transcript
abundance. If we define l_bar be the mean transcript length in a
sample, which can be calculated as
l_bar = \sum_i TPM_i / 10^6 * effective_length_i (i goes through every transcript),
the following equation is hold:
FPKM_i = 10^3 / l_bar * TPM_i.
We can see that the sum of FPKM is not a constant across samples.
'IsoPct' stands for isoform percentage. It is the percentage of this
transcript's abandunce over its parent gene's abandunce. If its parent
gene has only one isoform or the gene information is not provided,
this field will be set to 100.
'posterior_mean_count', 'pme_TPM', 'pme_FPKM' are posterior mean
estimates calculated by RSEM's Gibbs
sampler. 'posterior_standard_deviation_of_count' is the posterior
standard deviation of counts. 'IsoPct_from_pme_TPM' is the isoform
percentage calculated from 'pme_TPM' values.
'TPM_ci_lower_bound', 'TPM_ci_upper_bound', 'FPKM_ci_lower_bound' and
'FPKM_ci_upper_bound' are lower(l) and upper(u) bounds of 95%
credibility intervals for TPM and FPKM values. The bounds are
inclusive (i.e. [l, u]).
=item B<sample_name.genes.results>
File containing gene level expression estimates. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
gene_id transcript_id(s) length effective_length expected_count TPM FPKM [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM TPM_ci_lower_bound TPM_ci_upper_bound FPKM_ci_lower_bound FPKM_ci_upper_bound]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'transcript_id(s)' is a comma-separated list of transcript_ids
belonging to this gene. If no gene information is provided, 'gene_id'
and 'transcript_id(s)' are identical (the 'transcript_id').
A gene's 'length' and 'effective_length' are
defined as the weighted average of its transcripts' lengths and
effective lengths (weighted by 'IsoPct'). A gene's abundance estimates
are just the sum of its transcripts' abundance estimates.
=item B<sample_name.alleles.results>
Only generated when the RSEM references are built with allele-specific
transcripts.
This file contains allele level expression estimates for
allele-specific expression calculation. The first line
contains column names separated by the tab character. The format of
each line in the rest of this file is:
allele_id transcript_id gene_id length effective_length expected_count TPM FPKM AlleleIsoPct AlleleGenePct [posterior_mean_count posterior_standard_deviation_of_count pme_TPM pme_FPKM AlleleIsoPct_from_pme_TPM AlleleGenePct_from_pme_TPM TPM_ci_lower_bound TPM_ci_upper_bound FPKM_ci_lower_bound FPKM_ci_upper_bound]
Fields are separated by the tab character. Fields within "[]" are
optional. They will not be presented if neither '--calc-pme' nor
'--calc-ci' is set.
'allele_id' is the allele-specific name of this allele-specific transcript.
'AlleleIsoPct' stands for allele-specific percentage on isoform
level. It is the percentage of this allele-specific transcript's
abundance over its parent transcript's abundance. If its parent
transcript has only one allele variant form, this field will be set to
100.
'AlleleGenePct' stands for allele-specific percentage on gene
level. It is the percentage of this allele-specific transcript's
abundance over its parent gene's abundance.
'AlleleIsoPct_from_pme_TPM' and 'AlleleGenePct_from_pme_TPM' have
similar meanings. They are calculated based on posterior mean
estimates.
Please note that if this file is present, the fields 'length' and
'effective_length' in 'sample_name.isoforms.results' should be
interpreted similarly as the corresponding definitions in
'sample_name.genes.results'.
=item B<sample_name.transcript.bam, sample_name.transcript.sorted.bam and sample_name.transcript.sorted.bam.bai>
Only generated when --no-bam-output is not specified.
'sample_name.transcript.bam' is a BAM-formatted file of read
alignments in transcript coordinates. The MAPQ field of each alignment
is set to min(100, floor(-10 * log10(1.0 - w) + 0.5)), where w is the
posterior probability of that alignment being the true mapping of a
read. In addition, RSEM pads a new tag ZW:f:value, where value is a
single precision floating number representing the posterior
probability. Because this file contains all alignment lines produced
by bowtie or user-specified aligners, it can also be used as a
replacement of the aligner generated BAM/SAM file. For paired-end
reads, if one mate has alignments but the other does not, this file
marks the alignable mate as "unmappable" (flag bit 0x4) and appends an
optional field "Z0:A:!".
'sample_name.transcript.sorted.bam' and
'sample_name.transcript.sorted.bam.bai' are the sorted BAM file and
indices generated by samtools (included in RSEM package).
=item B<sample_name.genome.bam, sample_name.genome.sorted.bam and sample_name.genome.sorted.bam.bai>
Only generated when --no-bam-output is not specified and --output-genome-bam is specified.
'sample_name.genome.bam' is a BAM-formatted file of read alignments in
genomic coordinates. Alignments of reads that have identical genomic
coordinates (i.e., alignments to different isoforms that share the
same genomic region) are collapsed into one alignment. The MAPQ field
of each alignment is set to min(100, floor(-10 * log10(1.0 - w) +
0.5)), where w is the posterior probability of that alignment being
the true mapping of a read. In addition, RSEM pads a new tag
ZW:f:value, where value is a single precision floating number
representing the posterior probability. If an alignment is spliced, a
XS:A:value tag is also added, where value is either '+' or '-'
indicating the strand of the transcript it aligns to.
'sample_name.genome.sorted.bam' and 'sample_name.genome.sorted.bam.bai' are the
sorted BAM file and indices generated by samtools (included in RSEM package).
=item B<sample_name.time>
Only generated when --time is specified.
It contains time (in seconds) consumed by aligning reads, estimating expression levels and calculating credibility intervals.
=item B<sample_name.stat>
This is a folder instead of a file. All model related statistics are stored in this folder. Use 'rsem-plot-model' can generate plots using this folder.
=back
=head1 EXAMPLES
Assume the path to the bowtie executables is in the user's PATH environment variable. Reference files are under '/ref' with name 'mouse_125'.
1) '/data/mmliver.fq', single-end reads with quality scores. Quality scores are encoded as for 'GA pipeline version >= 1.3'. We want to use 8 threads and generate a genome BAM file:
rsem-calculate-expression --phred64-quals \
-p 8 \
--output-genome-bam \
/data/mmliver.fq \
/ref/mouse_125 \
mmliver_single_quals
2) '/data/mmliver_1.fq' and '/data/mmliver_2.fq', paired-end reads with quality scores. Quality scores are in SANGER format. We want to use 8 threads and do not generate a genome BAM file:
rsem-calculate-expression -p 8 \
--paired-end \
/data/mmliver_1.fq \
/data/mmliver_2.fq \
/ref/mouse_125 \
mmliver_paired_end_quals
3) '/data/mmliver.fa', single-end reads without quality scores. We want to use 8 threads:
rsem-calculate-expression -p 8 \
--no-qualities \
/data/mmliver.fa \
/ref/mouse_125 \
mmliver_single_without_quals
4) Data are the same as 1). This time we assume the bowtie executables are under '/sw/bowtie'. We want to take a fragment length distribution into consideration. We set the fragment length mean to 150 and the standard deviation to 35. In addition to a BAM file, we also want to generate credibility intervals. We allow RSEM to use 1GB of memory for CI calculation:
rsem-calculate-expression --bowtie-path /sw/bowtie \
--phred64-quals \
--fragment-length-mean 150.0 \
--fragment-length-sd 35.0 \
-p 8 \
--output-genome-bam \
--calc-ci \
--ci-memory 1024 \
/data/mmliver.fq \
/ref/mouse_125 \
mmliver_single_quals
5) '/data/mmliver_paired_end_quals.bam', paired-end reads with quality scores. We want to use 8 threads:
rsem-calculate-expression --paired-end \
--bam \
-p 8 \
/data/mmliver_paired_end_quals.bam \
/ref/mouse_125 \
mmliver_paired_end_quals
=cut