forked from deweylab/RSEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEM.cpp
653 lines (521 loc) · 18.7 KB
/
EM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<string>
#include<vector>
#include<algorithm>
#include<fstream>
#include<iostream>
#include<pthread.h>
#include "utils.h"
#include "my_assert.h"
#include "sampling.h"
#include "Read.h"
#include "SingleRead.h"
#include "SingleReadQ.h"
#include "PairedEndRead.h"
#include "PairedEndReadQ.h"
#include "SingleHit.h"
#include "PairedEndHit.h"
#include "Model.h"
#include "SingleModel.h"
#include "SingleQModel.h"
#include "PairedEndModel.h"
#include "PairedEndQModel.h"
#include "Transcript.h"
#include "Transcripts.h"
#include "Refs.h"
#include "GroupInfo.h"
#include "HitContainer.h"
#include "ReadIndex.h"
#include "ReadReader.h"
#include "ModelParams.h"
#include "HitWrapper.h"
#include "BamWriter.h"
#include "WriteResults.h"
using namespace std;
const double STOP_CRITERIA = 0.001;
const int MAX_ROUND = 10000;
const int MIN_ROUND = 20;
struct Params {
void *model;
void *reader, *hitv, *ncpv, *mhp, *countv;
};
int read_type;
int m, M; // m genes, M isoforms
READ_INT_TYPE N0, N1, N2, N_tot;
int nThreads;
bool genBamF; // If user wants to generate bam file, true; otherwise, false.
bool bamSampling; // true if sampling from read posterior distribution when bam file is generated
bool updateModel, calcExpectedWeights;
bool genGibbsOut; // generate file for Gibbs sampler
char refName[STRLEN], outName[STRLEN];
char imdName[STRLEN], statName[STRLEN];
char refF[STRLEN], cntF[STRLEN], tiF[STRLEN];
char mparamsF[STRLEN];
char modelF[STRLEN], thetaF[STRLEN];
char inpSamType;
char *pt_fn_list, *pt_chr_list;
char inpSamF[STRLEN], outBamF[STRLEN], fn_list[STRLEN], chr_list[STRLEN];
char out_for_gibbs_F[STRLEN];
vector<double> theta, eel; // eel : expected effective length
double *probv, **countvs;
Refs refs;
Transcripts transcripts;
ModelParams mparams;
bool hasSeed;
seedType seed;
template<class ReadType, class HitType, class ModelType>
void init(ReadReader<ReadType> **&readers, HitContainer<HitType> **&hitvs, double **&ncpvs, ModelType **&mhps) {
READ_INT_TYPE nReads;
HIT_INT_TYPE nHits;
int rt; // read type
READ_INT_TYPE nrLeft, curnr; // nrLeft : number of reads left, curnr: current number of reads
HIT_INT_TYPE nhT; // nhT : hit threshold per thread
char datF[STRLEN];
int s;
char readFs[2][STRLEN];
ReadIndex *indices[2];
ifstream fin;
readers = new ReadReader<ReadType>*[nThreads];
genReadFileNames(imdName, 1, read_type, s, readFs);
for (int i = 0; i < s; i++) {
indices[i] = new ReadIndex(readFs[i]);
}
for (int i = 0; i < nThreads; i++) {
readers[i] = new ReadReader<ReadType>(s, readFs, refs.hasPolyA(), mparams.seedLen); // allow calculation of calc_lq() function
readers[i]->setIndices(indices);
}
hitvs = new HitContainer<HitType>*[nThreads];
for (int i = 0; i < nThreads; i++) {
hitvs[i] = new HitContainer<HitType>();
}
sprintf(datF, "%s.dat", imdName);
fin.open(datF);
general_assert(fin.is_open(), "Cannot open " + cstrtos(datF) + "! It may not exist.");
fin>>nReads>>nHits>>rt;
general_assert(nReads == N1, "Number of alignable reads does not match!");
general_assert(rt == read_type, "Data file (.dat) does not have the right read type!");
//A just so so strategy for paralleling
nhT = nHits / nThreads;
nrLeft = N1;
curnr = 0;
ncpvs = new double*[nThreads];
for (int i = 0; i < nThreads; i++) {
HIT_INT_TYPE ntLeft = nThreads - i - 1; // # of threads left
general_assert(readers[i]->locate(curnr), "Read indices files do not match!");
while (nrLeft > ntLeft && (i == nThreads - 1 || hitvs[i]->getNHits() < nhT)) {
general_assert(hitvs[i]->read(fin), "Cannot read alignments from .dat file!");
--nrLeft;
if (verbose && nrLeft % 1000000 == 0) { cout<< "DAT "<< nrLeft << " reads left"<< endl; }
}
ncpvs[i] = new double[hitvs[i]->getN()];
memset(ncpvs[i], 0, sizeof(double) * hitvs[i]->getN());
curnr += hitvs[i]->getN();
if (verbose) { cout<<"Thread "<< i<< " : N = "<< hitvs[i]->getN()<< ", NHit = "<< hitvs[i]->getNHits()<< endl; }
}
fin.close();
mhps = new ModelType*[nThreads];
for (int i = 0; i < nThreads; i++) {
mhps[i] = new ModelType(mparams, false); // just model helper
}
probv = new double[M + 1];
countvs = new double*[nThreads];
for (int i = 0; i < nThreads; i++) {
countvs[i] = new double[M + 1];
}
if (verbose) { printf("EM_init finished!\n"); }
}
template<class ReadType, class HitType, class ModelType>
void* E_STEP(void* arg) {
Params *params = (Params*)arg;
ModelType *model = (ModelType*)(params->model);
ReadReader<ReadType> *reader = (ReadReader<ReadType>*)(params->reader);
HitContainer<HitType> *hitv = (HitContainer<HitType>*)(params->hitv);
double *ncpv = (double*)(params->ncpv);
ModelType *mhp = (ModelType*)(params->mhp);
double *countv = (double*)(params->countv);
bool needCalcConPrb = model->getNeedCalcConPrb();
ReadType read;
READ_INT_TYPE N = hitv->getN();
double sum;
vector<double> fracs; //to remove this, do calculation twice
HIT_INT_TYPE fr, to, id;
if (needCalcConPrb || updateModel) { reader->reset(); }
if (updateModel) { mhp->init(); }
memset(countv, 0, sizeof(double) * (M + 1));
for (READ_INT_TYPE i = 0; i < N; i++) {
if (needCalcConPrb || updateModel) {
general_assert(reader->next(read), "Can not load a read!");
}
fr = hitv->getSAt(i);
to = hitv->getSAt(i + 1);
fracs.resize(to - fr + 1);
sum = 0.0;
if (needCalcConPrb) { ncpv[i] = model->getNoiseConPrb(read); }
fracs[0] = probv[0] * ncpv[i];
if (fracs[0] < EPSILON) fracs[0] = 0.0;
sum += fracs[0];
for (HIT_INT_TYPE j = fr; j < to; j++) {
HitType &hit = hitv->getHitAt(j);
if (needCalcConPrb) { hit.setConPrb(model->getConPrb(read, hit)); }
id = j - fr + 1;
fracs[id] = probv[hit.getSid()] * hit.getConPrb();
if (fracs[id] < EPSILON) fracs[id] = 0.0;
sum += fracs[id];
}
if (sum >= EPSILON) {
fracs[0] /= sum;
countv[0] += fracs[0];
if (updateModel) { mhp->updateNoise(read, fracs[0]); }
if (calcExpectedWeights) { ncpv[i] = fracs[0]; }
for (HIT_INT_TYPE j = fr; j < to; j++) {
HitType &hit = hitv->getHitAt(j);
id = j - fr + 1;
fracs[id] /= sum;
countv[hit.getSid()] += fracs[id];
if (updateModel) { mhp->update(read, hit, fracs[id]); }
if (calcExpectedWeights) { hit.setConPrb(fracs[id]); }
}
}
else if (calcExpectedWeights) {
ncpv[i] = 0.0;
for (HIT_INT_TYPE j = fr; j < to; j++) {
HitType &hit = hitv->getHitAt(j);
hit.setConPrb(0.0);
}
}
}
return NULL;
}
template<class ReadType, class HitType, class ModelType>
void* calcConProbs(void* arg) {
Params *params = (Params*)arg;
ModelType *model = (ModelType*)(params->model);
ReadReader<ReadType> *reader = (ReadReader<ReadType>*)(params->reader);
HitContainer<HitType> *hitv = (HitContainer<HitType>*)(params->hitv);
double *ncpv = (double*)(params->ncpv);
ReadType read;
READ_INT_TYPE N = hitv->getN();
HIT_INT_TYPE fr, to;
assert(model->getNeedCalcConPrb());
reader->reset();
for (READ_INT_TYPE i = 0; i < N; i++) {
general_assert(reader->next(read), "Can not load a read!");
fr = hitv->getSAt(i);
to = hitv->getSAt(i + 1);
ncpv[i] = model->getNoiseConPrb(read);
for (HIT_INT_TYPE j = fr; j < to; j++) {
HitType &hit = hitv->getHitAt(j);
hit.setConPrb(model->getConPrb(read, hit));
}
}
return NULL;
}
template<class ModelType>
void writeResults(ModelType& model, double* counts) {
sprintf(modelF, "%s.model", statName);
model.write(modelF);
writeResultsEM(M, refName, imdName, transcripts, theta, eel, countvs[0]);
}
template<class ReadType, class HitType, class ModelType>
void release(ReadReader<ReadType> **readers, HitContainer<HitType> **hitvs, double **ncpvs, ModelType **mhps) {
delete[] probv;
for (int i = 0; i < nThreads; i++) {
delete[] countvs[i];
}
delete[] countvs;
for (int i = 0; i < nThreads; i++) {
delete readers[i];
delete hitvs[i];
delete[] ncpvs[i];
delete mhps[i];
}
delete[] readers;
delete[] hitvs;
delete[] ncpvs;
delete[] mhps;
}
inline bool doesUpdateModel(int ROUND) {
// return ROUND <= 20 || ROUND % 100 == 0;
return ROUND <= 10;
}
//Including initialize, algorithm and results saving
template<class ReadType, class HitType, class ModelType>
void EM() {
FILE *fo;
int ROUND;
double sum;
double bChange = 0.0, change = 0.0; // bChange : biggest change
int totNum = 0;
ModelType model(mparams); //master model
ReadReader<ReadType> **readers;
HitContainer<HitType> **hitvs;
double **ncpvs;
ModelType **mhps; //model helpers
Params fparams[nThreads];
pthread_t threads[nThreads];
pthread_attr_t attr;
int rc;
//initialize boolean variables
updateModel = calcExpectedWeights = false;
theta.clear();
theta.resize(M + 1, 0.0);
init<ReadType, HitType, ModelType>(readers, hitvs, ncpvs, mhps);
//set initial parameters
assert(N_tot > N2);
theta[0] = max(N0 * 1.0 / (N_tot - N2), 1e-8);
double val = (1.0 - theta[0]) / M;
for (int i = 1; i <= M; i++) theta[i] = val;
model.estimateFromReads(imdName);
for (int i = 0; i < nThreads; i++) {
fparams[i].model = (void*)(&model);
fparams[i].reader = (void*)readers[i];
fparams[i].hitv = (void*)hitvs[i];
fparams[i].ncpv = (void*)ncpvs[i];
fparams[i].mhp = (void*)mhps[i];
fparams[i].countv = (void*)countvs[i];
}
/* set thread attribute to be joinable */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
ROUND = 0;
do {
++ROUND;
updateModel = doesUpdateModel(ROUND);
for (int i = 0; i <= M; i++) probv[i] = theta[i];
//E step
for (int i = 0; i < nThreads; i++) {
rc = pthread_create(&threads[i], &attr, E_STEP<ReadType, HitType, ModelType>, (void*)(&fparams[i]));
pthread_assert(rc, "pthread_create", "Cannot create thread " + itos(i) + " (numbered from 0) at ROUND " + itos(ROUND) + "!");
}
for (int i = 0; i < nThreads; i++) {
rc = pthread_join(threads[i], NULL);
pthread_assert(rc, "pthread_join", "Cannot join thread " + itos(i) + " (numbered from 0) at ROUND " + itos(ROUND) + "!");
}
model.setNeedCalcConPrb(false);
for (int i = 1; i < nThreads; i++) {
for (int j = 0; j <= M; j++) {
countvs[0][j] += countvs[i][j];
}
}
//add N0 noise reads
countvs[0][0] += N0;
//M step;
sum = 0.0;
for (int i = 0; i <= M; i++) sum += countvs[0][i];
assert(sum >= EPSILON);
for (int i = 0; i <= M; i++) theta[i] = countvs[0][i] / sum;
if (updateModel) {
model.init();
for (int i = 0; i < nThreads; i++) { model.collect(*mhps[i]); }
model.finish();
}
// Relative error
bChange = 0.0; totNum = 0;
for (int i = 0; i <= M; i++)
if (probv[i] >= 1e-7) {
change = fabs(theta[i] - probv[i]) / probv[i];
if (change >= STOP_CRITERIA) ++totNum;
if (bChange < change) bChange = change;
}
if (verbose) { cout<< "ROUND = "<< ROUND<< ", SUM = "<< setprecision(15)<< sum<< ", bChange = " << setprecision(6)<< bChange<< ", totNum = " << totNum<< endl; }
} while (ROUND < MIN_ROUND || (totNum > 0 && ROUND < MAX_ROUND));
// } while (ROUND < 1);
if (totNum > 0) { cout<< "Warning: RSEM reaches "<< MAX_ROUND<< " iterations before meeting the convergence criteria."<< endl; }
//generate output file used by Gibbs sampler
if (genGibbsOut) {
if (model.getNeedCalcConPrb()) {
for (int i = 0; i < nThreads; i++) {
rc = pthread_create(&threads[i], &attr, calcConProbs<ReadType, HitType, ModelType>, (void*)(&fparams[i]));
pthread_assert(rc, "pthread_create", "Cannot create thread " + itos(i) + " (numbered from 0) when generating files for Gibbs sampler!");
}
for (int i = 0; i < nThreads; i++) {
rc = pthread_join(threads[i], NULL);
pthread_assert(rc, "pthread_join", "Cannot join thread " + itos(i) + " (numbered from 0) when generating files for Gibbs sampler!");
}
}
model.setNeedCalcConPrb(false);
sprintf(out_for_gibbs_F, "%s.ofg", imdName);
ofstream fout(out_for_gibbs_F);
fout<< M<< " "<< N0<< endl;
for (int i = 0; i < nThreads; i++) {
READ_INT_TYPE numN = hitvs[i]->getN();
for (READ_INT_TYPE j = 0; j < numN; j++) {
HIT_INT_TYPE fr = hitvs[i]->getSAt(j);
HIT_INT_TYPE to = hitvs[i]->getSAt(j + 1);
HIT_INT_TYPE totNum = 0;
if (ncpvs[i][j] >= EPSILON) { ++totNum; fout<< "0 "<< setprecision(15)<< ncpvs[i][j]<< " "; }
for (HIT_INT_TYPE k = fr; k < to; k++) {
HitType &hit = hitvs[i]->getHitAt(k);
if (hit.getConPrb() >= EPSILON) {
++totNum;
fout<< hit.getSid()<< " "<< setprecision(15)<< hit.getConPrb()<< " ";
}
}
if (totNum > 0) { fout<< endl; }
}
}
fout.close();
}
//calculate expected weights and counts using learned parameters
//just use the raw theta learned from the data, do not correct for eel or mw
updateModel = false; calcExpectedWeights = true;
for (int i = 0; i <= M; i++) probv[i] = theta[i];
for (int i = 0; i < nThreads; i++) {
rc = pthread_create(&threads[i], &attr, E_STEP<ReadType, HitType, ModelType>, (void*)(&fparams[i]));
pthread_assert(rc, "pthread_create", "Cannot create thread " + itos(i) + " (numbered from 0) when calculating expected weights!");
}
for (int i = 0; i < nThreads; i++) {
rc = pthread_join(threads[i], NULL);
pthread_assert(rc, "pthread_join", "Cannot join thread " + itos(i) + " (numbered from 0) when calculating expected weights!");
}
model.setNeedCalcConPrb(false);
for (int i = 1; i < nThreads; i++) {
for (int j = 0; j <= M; j++) {
countvs[0][j] += countvs[i][j];
}
}
countvs[0][0] += N0;
/* destroy attribute */
pthread_attr_destroy(&attr);
sprintf(thetaF, "%s.theta", statName);
fo = fopen(thetaF, "w");
fprintf(fo, "%d\n", M + 1);
// output theta'
for (int i = 0; i < M; i++) fprintf(fo, "%.15g ", theta[i]);
fprintf(fo, "%.15g\n", theta[M]);
//calculate expected effective lengths for each isoform
calcExpectedEffectiveLengths<ModelType>(M, refs, model, eel);
polishTheta(M, theta, eel, model.getMW());
// output theta
for (int i = 0; i < M; i++) fprintf(fo, "%.15g ", theta[i]);
fprintf(fo, "%.15g\n", theta[M]);
fclose(fo);
writeResults<ModelType>(model, countvs[0]);
if (genBamF) {
sprintf(outBamF, "%s.transcript.bam", outName);
if (bamSampling) {
READ_INT_TYPE local_N;
HIT_INT_TYPE fr, to, len, id;
vector<double> arr;
engine_type engine(hasSeed ? seed : time(NULL));
uniform_01_dist uniform_01;
uniform_01_generator rg(engine, uniform_01);
if (verbose) cout<< "Begin to sample reads from their posteriors."<< endl;
for (int i = 0; i < nThreads; i++) {
local_N = hitvs[i]->getN();
for (READ_INT_TYPE j = 0; j < local_N; j++) {
fr = hitvs[i]->getSAt(j);
to = hitvs[i]->getSAt(j + 1);
len = to - fr + 1;
arr.assign(len, 0);
arr[0] = ncpvs[i][j];
for (HIT_INT_TYPE k = fr; k < to; k++) arr[k - fr + 1] = arr[k - fr] + hitvs[i]->getHitAt(k).getConPrb();
id = (arr[len - 1] < EPSILON ? -1 : sample(rg, arr, len)); // if all entries in arr are 0, let id be -1
for (HIT_INT_TYPE k = fr; k < to; k++) hitvs[i]->getHitAt(k).setConPrb(k - fr + 1 == id ? 1.0 : 0.0);
}
}
if (verbose) cout<< "Sampling is finished."<< endl;
}
BamWriter writer(inpSamType, inpSamF, pt_fn_list, outBamF, transcripts);
HitWrapper<HitType> wrapper(nThreads, hitvs);
writer.work(wrapper);
}
release<ReadType, HitType, ModelType>(readers, hitvs, ncpvs, mhps);
}
int main(int argc, char* argv[]) {
ifstream fin;
bool quiet = false;
if (argc < 6) {
printf("Usage : rsem-run-em refName read_type sampleName imdName statName [-p #Threads] [-b samInpType samInpF has_fn_list_? [fn_list]] [-q] [--gibbs-out] [--sampling] [--seed seed]\n\n");
printf(" refName: reference name\n");
printf(" read_type: 0 single read without quality score; 1 single read with quality score; 2 paired-end read without quality score; 3 paired-end read with quality score.\n");
printf(" sampleName: sample's name, including the path\n");
printf(" sampleToken: sampleName excludes the path\n");
printf(" -p: number of threads which user wants to use. (default: 1)\n");
printf(" -b: produce bam format output file. (default: off)\n");
printf(" -q: set it quiet\n");
printf(" --gibbs-out: generate output file used by Gibbs sampler. (default: off)\n");
printf(" --sampling: sample each read from its posterior distribution when bam file is generated. (default: off)\n");
printf(" --seed uint32: the seed used for the BAM sampling. (default: off)\n");
printf("// model parameters should be in imdName.mparams.\n");
exit(-1);
}
time_t a = time(NULL);
strcpy(refName, argv[1]);
read_type = atoi(argv[2]);
strcpy(outName, argv[3]);
strcpy(imdName, argv[4]);
strcpy(statName, argv[5]);
nThreads = 1;
genBamF = false;
bamSampling = false;
genGibbsOut = false;
pt_fn_list = pt_chr_list = NULL;
hasSeed = false;
for (int i = 6; i < argc; i++) {
if (!strcmp(argv[i], "-p")) { nThreads = atoi(argv[i + 1]); }
if (!strcmp(argv[i], "-b")) {
genBamF = true;
inpSamType = argv[i + 1][0];
strcpy(inpSamF, argv[i + 2]);
if (atoi(argv[i + 3]) == 1) {
strcpy(fn_list, argv[i + 4]);
pt_fn_list = (char*)(&fn_list);
}
}
if (!strcmp(argv[i], "-q")) { quiet = true; }
if (!strcmp(argv[i], "--gibbs-out")) { genGibbsOut = true; }
if (!strcmp(argv[i], "--sampling")) { bamSampling = true; }
if (!strcmp(argv[i], "--seed")) {
hasSeed = true;
int len = strlen(argv[i + 1]);
seed = 0;
for (int k = 0; k < len; k++) seed = seed * 10 + (argv[i + 1][k] - '0');
}
}
general_assert(nThreads > 0, "Number of threads should be bigger than 0!");
verbose = !quiet;
//basic info loading
sprintf(refF, "%s.seq", refName);
refs.loadRefs(refF);
M = refs.getM();
sprintf(tiF, "%s.ti", refName);
transcripts.readFrom(tiF);
sprintf(cntF, "%s.cnt", statName);
fin.open(cntF);
general_assert(fin.is_open(), "Cannot open " + cstrtos(cntF) + "! It may not exist.");
fin>>N0>>N1>>N2>>N_tot;
fin.close();
general_assert(N1 > 0, "There are no alignable reads!");
if ((READ_INT_TYPE)nThreads > N1) nThreads = N1;
//set model parameters
mparams.M = M;
mparams.N[0] = N0; mparams.N[1] = N1; mparams.N[2] = N2;
mparams.refs = &refs;
sprintf(mparamsF, "%s.mparams", imdName);
fin.open(mparamsF);
general_assert(fin.is_open(), "Cannot open " + cstrtos(mparamsF) + "It may not exist.");
fin>> mparams.minL>> mparams.maxL>> mparams.probF;
int val; // 0 or 1 , for estRSPD
fin>>val;
mparams.estRSPD = (val != 0);
fin>> mparams.B>> mparams.mate_minL>> mparams.mate_maxL>> mparams.mean>> mparams.sd;
fin>> mparams.seedLen;
fin.close();
//run EM
switch(read_type) {
case 0 : EM<SingleRead, SingleHit, SingleModel>(); break;
case 1 : EM<SingleReadQ, SingleHit, SingleQModel>(); break;
case 2 : EM<PairedEndRead, PairedEndHit, PairedEndModel>(); break;
case 3 : EM<PairedEndReadQ, PairedEndHit, PairedEndQModel>(); break;
default : fprintf(stderr, "Unknown Read Type!\n"); exit(-1);
}
time_t b = time(NULL);
printTimeUsed(a, b, "EM.cpp");
return 0;
}