-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexercise09.tex
295 lines (275 loc) · 11.2 KB
/
exercise09.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
\documentclass[11pt]{article}
% % \def\hidesolutions{}
\input{header}
\begin{document}
\exsheet{9}{14}{November} % parameters are the number of the session and the day
\begin{exercise}
Show that
\begin{align}
\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}.
\end{align}
\textit{Hint: square the integral and convert it to polar/radial coordinates.}
\end{exercise}
\begin{solution}
Following the hint, we find
\begin{align}
\left(\int_{-\infty}^\infty e^{-x^2} dx\right)^2 &= \int_{-\infty}^\infty e^{-x^2} dx \int_{-\infty}^\infty e^{-y^2} dy = \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-(x^2 + y^2)} dx dy\\
&= \int_0^{2\pi} \int_0^\infty e^{-r^2} r dr d\theta = 2\pi \int_0^\infty e^{-r^2} r dr \\
&= \pi \int_0^\infty e^{-u} du = \pi [-e^u]_{u=0}^{u=\infty} = \pi,
\end{align}
where we have used Fubini's Theorem and the substitution $u = r^2$. Taking the square root of both sides gives the desired result.
\end{solution}
\begin{exercise}
We check whether the following are distributions or not.
\begin{itemize}
\item
Show that $T$ is a distribution, where
\begin{align}\label{eq:ex2 dist1}
T(\phi) = \int_{-1}^{1} \phi(x) \ dx
.
\end{align}
\item
Show that $T$ is a distribution, where
\begin{align}\label{eq:ex2 dist2}
T(\phi) = \int_{-\infty}^{\infty} \phi(x) \ dx
.
\end{align}
\item
Show that $S$ is not a distribution, where
\begin{align}\label{eq:ex2 dist3}
S(\phi) = \int_{0}^{1} |\phi(x)| \ dx
.
\end{align}
\end{itemize}
\end{exercise}
\begin{solution}
The definition in \eqref{eq:ex2 dist1} is clearly linear in $\phi$ as the integral is linear
and finite for any $\phi \in \mathcal{D}$ since continuous functions on compact sets are bounded. In particular, we have
\begin{align}
|T(\phi)| = \left| \int_{-1}^{1} \phi(x) \ dx \right| \leq \int_{-1}^{1} |\phi(x)| \ dx \leq \sup_{x \in [-1,1]} |\phi(x)| \int_{-1}^{1} dx = 2 \sup_{x \in [-1,1]} |\phi(x)|,
\end{align}
which proves the continuity condition.\\
The definition in \eqref{eq:ex2 dist2} is also linear in $\phi$ for the same reason as before. To show that the integral is finite for any $\phi \in \mathcal{D}$, we use the fact that $\phi$ is compactly supported and hence bounded.
In particular, there exists for any $\phi \in \mathcal{D}$ a compact interval $[a, b] \subset \mathbb{R}$ such that $\mathrm{supp}(\phi) \subset [a, b]$. Then we have
\begin{align}
|T(\phi)| = \left| \int_{-\infty}^{\infty} \phi(x) \ dx \right| \leq \int_{a}^{b} |\phi(x)| \ dx \leq \sup_{x \in [a,b]} |\phi(x)| \int_{a}^{b} dx = (b-a) \sup_{x \in [a,b]} |\phi(x)| < \infty,
\end{align}
which shows that the integral is finite for any $\phi \in \mathcal D$. Conversely, for any compact interval $[a, b] \in \mathbb{R}$ and $\phi \in \mathcal{D}$, such that $\mathrm{supp}(\phi) \subset [a, b]$, we have
\begin{align}
|T(\phi)| = \left| \int_{-\infty}^{\infty} \phi(x) \ dx \right| \leq \int_{a}^{b} |\phi(x)| \ dx \leq \sup_{x \in [a,b]} |\phi(x)| \int_{a}^{b} dx = (b-a) \sup_{x \in [a,b]} |\phi(x)|,
\end{align}
which shows the continuity condition.
\\
The definition in \eqref{eq:ex2 dist3} is not a distribution since it is not linear in $\phi$.
There are many different ways to see this.
For example, consider $\phi \in \mathcal{D}$ such that $\phi(x) \geq 0$ for all $x \in \mathbb{R}$.
We have seen such a function in the lecture.
Set $\psi = -\phi \in \mathcal D$. Then we have
\begin{align}
S(\phi + \psi) = \int_0^1 |\phi(x) + \psi(x)| \ dx = \int_0^1 0 \ dx = 0,
\end{align}
but
\begin{align}
S(\phi) + S(\psi) = \int_0^1 |\phi(x)| \ dx + \int_0^1 |\psi(x)| \ dx = 2 \int_0^1 |\phi(x)| \ dx > 0.
\end{align}
\end{solution}
\begin{exercise}
Suppose that $f : \mathbb R \rightarrow \mathbb R$ is an integrable function.
Whenever $a > 0$, show that
\begin{align}
T( \phi ) = a \langle f, \phi(a \cdot) \rangle
\end{align}
is a distribution.
\end{exercise}
\begin{solution}
With the substitution $u = ax$, hence $du = a dx$, we find
\begin{align}
\int f(u) \phi(u/a) \frac 1 a \ d u
=
\int f(ax) \phi(x) \ d x
.
\end{align}
Clearly, the function $g(x) := f(ax)$ is integrable. That means
\begin{align}
T( \phi ) = \int g(x) \phi(x) \ dx,
\end{align}
which is a distribution.
\end{solution}
\begin{exercise}
Find the distributional derivative of the function
\begin{align}
f(x) = |x|.
\end{align}
\end{exercise}
\begin{solution}
For any test function $\phi \in \mathcal{D}$, we have
\begin{align}
\langle f', \phi \rangle
&=
- \langle f, \phi' \rangle
=
- \int_{-\infty}^{\infty} |x| \phi'(x) \ dx
\\&
=
- \int_0^\infty x \phi'(x) \ dx + \int_{-\infty}^0 x\phi'(x) \ dx
\\
&=
-[x \phi(x)]_0^\infty + \int_0^\infty \phi(x) \ dx + [x \phi(x)]_{-\infty}^0 - \int_{-\infty}^0 \phi(x) \ dx
\\
&=
\int_0^\infty \phi(x) \ dx - \int_{-\infty}^0 \phi(x) \ dx
,
\end{align}
where we have used that $\phi$ is compactly supported and hence the boundary terms vanish.
We define the function $g$ by
\begin{align}
g(x) = \begin{cases} -1 & \text{ if } x < 0, \\ 1 & \text{ if } x \geq 0. \end{cases}
\end{align}
Apparently,
\begin{align}
\langle f', \phi \rangle = \langle g , \phi \rangle.
\end{align}
Note that we can also write this in terms of the Heaviside step function,
\begin{align}
H(x) = \begin{cases}
0 & \text{ if } x < 0,
\\
1 & \text{ if } x \geq 0.
\end{cases}
\end{align}
One easily sees that $g(x) = 2 H(x) - 1$ is an alternative way of writing the distributional derivative.
\end{solution}
\begin{exercise}
Consider the function with period $2$ that satisfies
\begin{align}
f(x) = \begin{cases}
-x & \text{ if } -1 < x \leq 0 \\
x & \text{ if } 0 < x \leq 1 \\
\end{cases}
\end{align}
\begin{itemize}
\item Draw a plot of this function from $-4$ to $4$.
\item Is this function differentiable? What is the first distributional derivative of this function?
\item What is the second distributional derivative of this function?
\end{itemize}
\end{exercise}
\begin{solution}
\begin{figure}
\centering
\begin{tikzpicture}
\begin{axis}[
axis lines=middle,
xlabel={$x$},
ylabel={$f(x)$},
xmin=-4, xmax=4,
ymin=0, ymax=2,
samples=400,
domain=-4:4,
xtick={-4,-3,...,4},
ytick={-1, 0, 1},
grid=major
]
% Plot the piecewise periodic function
\addplot[thick, blue, domain=-4:4]
{(mod(abs(x), 2)) * (mod(abs(x), 2) <= 1) + (2 - mod(abs(x), 2)) * (mod(abs(x), 2) > 1)};
\end{axis}
\end{tikzpicture}
\caption{Plot of the periodic function $f$.}
\label{fig:ex5}
\end{figure}
The solution is plotted in Figure \ref{fig:ex5}.
The function is not differentiable at $x \in \mathbb{Z}$ since the left and right derivatives do not agree:
for example, at $x=0$ the derivative from the left equals $-1$ but the derivative from the right equals $1$.
It remains to compute the distributional derivative.
If we look at the drawing we see that the function is continuous and differentiable over the intervals between integers.
Over the interval $(n,n+1)$, the derivative is either $1$ if $n$ is even or it is $-1$ if $n$ is odd.
Moreover, the function does not jump.
This gives us an idea what the distributional derivative should look like:
\begin{align}
f'(x) = \begin{cases}
1 & \text{ if } x \in (n,n+1), \text{ $n$ even, }
\\
-1 & \text{ if } x \in (n,n+1), \text{ $n$ odd. }
\end{cases}
\end{align}
Let us formalize this intuition. We use the definition of distributional derivative.
For any test function $\phi \in \mathcal{D}$,
we have by definition of the distributional derivative that
\begin{align*}
\langle f', \phi \rangle
&
=
- \langle f, \phi' \rangle
\\&
=
- \int_{-\infty}^{\infty} f(x) \phi'(x) \ dx
\\&
=
-
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ even}}} \int_{n}^{n+1} f(x) \phi'(x) \ dx
-
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ odd} }} \int_{n}^{n+1} f(x) \phi'(x) \ dx
\\&
=
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ even}}} \int_{n}^{n+1} \phi(x) \ dx - f(n+1)\phi(n+1) - f(n)\phi(n)
\\&\qquad
-
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ odd} }} \int_{n}^{n+1} \phi(x) \ dx - f(n+1)\phi(n ) - f(n)\phi(n)
\\&
=
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ even}}} \int_{n}^{n+1} \phi(x) \ dx
-
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ odd} }} \int_{n}^{n+1} \phi(x) \ dx
\\&\qquad
+
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ even}}} - f(n+1)\phi(n+1) - f(n)\phi(n)
-
\sum_{\substack{n \in \mathbb{Z}\\ n \text{ odd} }} - f(n+1)\phi(n ) - f(n)\phi(n)
.
\end{align*}
We simplify this. The point evaluations cancel out each other.
Then
\begin{align}
\langle f', \phi \rangle
&
=
\sum_{\substack{n \in \mathbb{Z} }} \int_{n}^{n+1} (-1)^{n} \phi(x) \ dx
.
\end{align}
This is exactly the form of $f'$ as proposed above. It also corresponds to our observations in the lecture.
For the second distributional derivative, we again use the definition and simplify:
\begin{align}
\langle f'', \phi \rangle
&
=
-
\langle f', \phi' \rangle
\\&
=
-
\sum_{\substack{n \in \mathbb{Z} }} (-1)^{n} \int_{n}^{n+1} \phi'(x) \ dx
\\&
=
-
\sum_{\substack{n \in \mathbb{Z} }} (-1)^{n} \left( \phi(n+1) - \phi(n) \right)
\\&
=
\sum_{\substack{n \in \mathbb{Z} }} (-1)^{n+1} \left( \phi(n+1) - \phi(n) \right)
.
\end{align}
As we now carefully observe for term in the sum:
when $n$ is odd, the summand is $\phi(n+1) - \phi(n)$, and when $n$ is even, then the summand is $- \phi(n+1) + \phi(n)$.
In other words, for every even integer $n$ we receive two positive Dirac deltas, and for every odd integer $n$ we receive two negative Dirac deltas.
Thus,
\begin{align}
\langle f'', \phi \rangle
=
\sum_{\substack{n \in \mathbb{Z} }} (-1)^{n} 2 \delta_{n}
.
\end{align}
This corresponds to the jumps of the distributional derivative $f'$.
we jump (up) by $2$ at every even integer
and
we jump (down) by $-2$ at every odd integer.
\end{solution}
\end{document}