-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
executable file
·139 lines (124 loc) · 3.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
import argparse
import logging
from pathlib import Path
import pytorch_lightning as pl
import torch
import finite_element_networks as fen
from finite_element_networks import (
FEN,
MLP,
FENDomainInfo,
FENDynamics,
FreeFormTerm,
ODESolver,
TransportTerm,
)
from finite_element_networks.lightning import (
BlackSeaDataModule,
CylinderFlowDataModule,
MultipleShootingCallback,
ScalarFlowDataModule,
SequenceRegressionTask,
)
try:
import wandb
from finite_element_networks.lightning.wandb import PlotsCallback
wandb_available = True
except:
wandb_available = False
logging.basicConfig(level=logging.INFO)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoints", default="checkpoints", help="Checkpoint directory"
)
parser.add_argument(
"dataset",
choices=["black-sea", "scalar-flow", "cylinder-flow"],
help="Dataset name",
)
args = parser.parse_args()
checkpoint_dir = args.checkpoints
dataset_name = args.dataset
project_root = Path(fen.__file__).resolve().parent.parent
data_root = project_root / "data" / dataset_name
if dataset_name == "black-sea":
dm_class = BlackSeaDataModule
stationary, autonomous = False, False
time_dim = 2
n_features = 3
elif dataset_name == "scalar-flow":
dm_class = ScalarFlowDataModule
stationary, autonomous = False, True
time_dim = 1
n_features = 4
elif dataset_name == "cylinder-flow":
dm_class = CylinderFlowDataModule
stationary, autonomous = True, True
time_dim = 1
n_features = 3
else:
raise RuntimeError(f"Unknown dataset {dataset_name}")
dm = dm_class(
data_root,
FENDomainInfo.from_domain,
num_workers=2,
pin_memory=True,
train_target_steps=10,
eval_target_steps=10,
batch_size=1,
)
dynamics = FENDynamics(
[
FreeFormTerm(
FreeFormTerm.build_coefficient_mlp(
n_features=n_features,
time_dim=time_dim,
space_dim=2,
hidden_dim=96,
n_layers=4,
non_linearity=torch.nn.Tanh,
stationary=stationary,
autonomous=autonomous,
),
stationary=stationary,
autonomous=autonomous,
zero_init=True,
),
TransportTerm(
TransportTerm.build_flow_field_mlp(
n_features=n_features,
time_dim=time_dim,
space_dim=2,
hidden_dim=96,
n_layers=4,
non_linearity=torch.nn.Tanh,
stationary=stationary,
autonomous=autonomous,
),
stationary=stationary,
autonomous=autonomous,
zero_init=True,
),
]
)
model = FEN(dynamics, ODESolver("dopri5", atol=1e-6, rtol=1e-6, adjoint=False))
task = SequenceRegressionTask(model, standardize=True)
logger = pl.loggers.WandbLogger(project="ref-impl") if wandb_available else None
callbacks = [MultipleShootingCallback(initial_steps=3, increase=1)]
if wandb_available:
callbacks.append(pl.callbacks.ModelCheckpoint(monitor="val/mae", mode="min"))
callbacks.append(PlotsCallback())
else:
callbacks.append(
pl.callbacks.ModelCheckpoint(
dirpath=checkpoint_dir, monitor="val/mae", mode="min"
)
)
gpus = 1 if torch.cuda.is_available() else 0
trainer = pl.Trainer(max_epochs=20, callbacks=callbacks, gpus=gpus, logger=logger)
trainer.fit(task, dm)
trainer.test(task, dm)
if __name__ == "__main__":
main()