-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
284 lines (230 loc) · 8.91 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import random
import imageio
import numpy as np
import torch
import wandb
import sys
import cv2, math
from matplotlib.colors import hsv_to_rgb
from alg_parameters import *
from enum import Enum
class Status(Enum):
REACH_GOAL = 3
LEAVE_GOAL = 2
VALID = 1 # 0: action executed
REPEAT_ACTION = -1
STATIC_COLLISION = -3 # out of boundaries or collision with obstacles
AGENT_COLLSION = -2
class BatchValues:
def __init__(self):
self.observations = list()
self.vector = list()
self.svo = list()
self.svo_exe = list()
self.comms_index = list()
self.returns_svo = list()
self.returns_action = list()
self.returns = list()
self.values = list()
self.actions = list()
self.ps = list()
self.trainValid = list()
self.blocking = list()
def __repr__(self) -> str:
temp = ""
for i in dir(self):
if not i.startswith("__"):
temp+=i+":"+str(getattr(self, i))+" "
return temp
class OneEpPerformance():
def __init__(self):
self.episodeReward = 0
self.numStep = 0
self.invalid = 0
self.block = 0
self.numLeaveGoal = 0
self.numCollide = 0
self.wrongBlocking = 0
self.maxGoals = 0
def __repr__(self) -> str:
temp = ""
for i in dir(self):
if not i.startswith("__"):
temp+=i+":"+str(getattr(self, i))+" "
return temp
class PerfDict():
def __init__(self):
self.Reward = list()
self.Valid_rate = list()
self.Episode_length = list()
self.Num_block = list()
self.Num_leave_goal = list()
self.Final_goals = list()
self.Half_goals = list()
self.Block_accuracy = list()
self.Max_goals = list()
self.Num_collide = list()
def __update__(self, oneEpPerf:OneEpPerformance, numOnGoal):
self.Reward.append(oneEpPerf.episodeReward)
self.Valid_rate.append(
((oneEpPerf.numStep*EnvParameters.N_AGENTS) - oneEpPerf.invalid)/ (oneEpPerf.numStep*EnvParameters.N_AGENTS))
self.Episode_length.append(oneEpPerf.numStep)
self.Num_block.append(oneEpPerf.block)
self.Num_leave_goal.append(oneEpPerf.numLeaveGoal)
self.Final_goals.append(numOnGoal)
self.Block_accuracy.append(
((oneEpPerf.numStep*EnvParameters.N_AGENTS) - oneEpPerf.wrongBlocking)/(oneEpPerf.numStep*EnvParameters.N_AGENTS))
self.Max_goals.append(oneEpPerf.maxGoals)
self.Num_collide.append(oneEpPerf.numCollide)
def __repr__(self) -> str:
temp = ""
for i in dir(self):
if not i.startswith("__"):
# print(i, getattr(self, i))
temp+=i+":"+str(getattr(self, i))+" "
return temp
class Loss():
def __init__(self):
self.all_loss = 0
self.policy_loss = 0
self.policy_entropy = 0
self.critic_loss = 0
self.valid_loss = 0
self.blocking_loss = 0
self.clipfrac = 0
self.grad_norm = 0
self.advantage = 0
def __repr__(self) -> str:
temp = ""
for i in dir(self):
if not i.startswith("__"):
temp+=i+":"+str(getattr(self, i))+" "
return temp
def getFreeCell(world):
listOfFree = np.swapaxes(np.where(world==0), 0,1)
np.random.shuffle(listOfFree)
return (listOfFree[0][0], listOfFree[0][1])
def get_connected_region(world0, regions_dict, x0, y0):
# ensure at the beginning of an episode, all agents and their goal at the same connected region
sys.setrecursionlimit(1000000)
if (x0, y0) in regions_dict: # have done
return regions_dict[(x0, y0)]
visited = set()
sx, sy = world0.shape[0], world0.shape[1]
work_list = [(x0, y0)]
while len(work_list) > 0:
(i, j) = work_list.pop()
if i < 0 or i >= sx or j < 0 or j >= sy:
continue
if world0[i, j] == -1:
continue # crashes
if world0[i, j] > 0:
regions_dict[(i, j)] = visited
if (i, j) in visited:
continue
visited.add((i, j))
work_list.append((i + 1, j))
work_list.append((i, j + 1))
work_list.append((i - 1, j))
work_list.append((i, j - 1))
regions_dict[(x0, y0)] = visited
return visited
def returnAsType(arr, type):
if(type=='np'): # numpy array
return arr
elif(type=='mat'): # to be used directly as a cell of matrix
return (arr[0], arr[1])
else:
raise Exception("Invalid Type as input")
def set_global_seeds(i):
"""set seed for fair comparison"""
torch.manual_seed(i)
torch.cuda.manual_seed(i)
torch.cuda.manual_seed_all(i)
np.random.seed(i)
random.seed(i)
torch.backends.cudnn.deterministic = True
def getMeanLoss(mb_loss):
meanLoss = Loss()
for i in dir(meanLoss):
if not i.startswith('__'):
temp = list()
for j in mb_loss:
temp.append(getattr(j,i))
setattr(meanLoss, i, np.nanmean(temp, axis=0))
return meanLoss
def write_to_wandb(step, performance_dict=None, mb_loss=None, imitation_loss=None, evaluate=True, greedy=True):
"""record performance using wandb"""
if imitation_loss is not None:
wandb.log({'Loss/Imitation_loss': imitation_loss[0]}, step=step)
wandb.log({'Grad/Imitation_grad': imitation_loss[1]}, step=step)
return
if evaluate:
if greedy:
for i in dir(performance_dict):
if not i.startswith('__'):
wandb.log({'Perf_greedy_eval/'+i: getattr(performance_dict, i)}, step=step)
else:
for i in dir(performance_dict):
if not i.startswith('__'):
wandb.log({'Perf_random_eval/'+i: getattr(performance_dict, i)}, step=step)
else:
meanLoss = getMeanLoss(mb_loss)
for i in dir(performance_dict):
if not i.startswith('__'):
wandb.log({'Perf/'+i: getattr(performance_dict, i)}, step=step)
for i in dir(meanLoss):
if not i.startswith('__'):
if i == 'grad_norm':
wandb.log({'Grad/' + i: getattr(meanLoss, i)}, step=step)
else:
wandb.log({'Loss/' + i: getattr(meanLoss, i)}, step=step)
def make_gif(images, file_name):
"""record gif"""
imageio.mimwrite(file_name, images, subrectangles=True)
print("wrote gif")
def init_colors():
"""the colors of agents and goals"""
c = {a + 1: hsv_to_rgb(np.array([a / float(EnvParameters.N_AGENTS), 1, 1])) for a in range(EnvParameters.N_AGENTS)}
c[0] = [1,1,1]
c[-1] = [0,0,0]
c[-2] = [0.5,0.5,0.5]
return c
def getRectPoints(coord, scale):
base = [coord[1]*scale, coord[0]*scale]
return np.array([base, [base[0]+scale-1, base[1]], [base[0]+scale-1,base[1]+scale-1], [base[0], base[1]+scale-1]])
def pixelForText(coord, scale):
base = [coord[1]*scale, coord[0]*scale]
return [int(math.floor(base[0]+scale*1/4)), int(math.floor(base[1]+scale*3/4))]
def getCenter(coord, scale):
base = [coord[1]*scale, coord[0]*scale]
return [int(math.floor(base[0]+scale/2)), int(math.floor(base[1]+scale/2))]
def getTriPoints( coord, scale):
base = [coord[1]*scale, coord[0]*scale]
return np.array([[int(math.floor(base[0]+scale/2)), base[1]], [base[0]+scale-1,base[1]+scale-1], [base[0], base[1]+scale-1]])
def renderWorld(scale=20, world = np.zeros(1),agents=[], goals=[], svoOrder = []):
size = world.shape
screen_height = scale*size[0]
screen_width = scale*size[1]
colours = init_colors()
scene = np.zeros([screen_height, screen_width, 3])
for coord,val in np.ndenumerate(world):
cv2.fillPoly(scene, pts=[getRectPoints(coord=coord, scale=scale)], color=colours[val])
for val,coord in enumerate(goals):
cv2.circle(scene, getCenter(coord=coord, scale=scale), math.floor(scale/2)-1, colours[val+1], -1)
# cv2.putText(scene, str(val+1), pixelForText(coord, scale), cv2.FONT_HERSHEY_SIMPLEX,scale/40, (0,0,0), int(scale/20))
for val,coord in enumerate(agents):
cv2.fillPoly(scene, pts=[getRectPoints(coord=coord, scale=scale)], color=colours[val+1])
cv2.putText(scene, str(svoOrder[val]), pixelForText(coord, scale), cv2.FONT_HERSHEY_SIMPLEX,scale/40, (0,0,0), int(scale/20))
scene = scene*255
scene = scene.astype(dtype='uint8')
return scene
def symmetric_normalize(A):
# Compute the degree matrix D for each adjacency matrix in the batch
degree = torch.sum(A, dim=-1)
D = torch.diag_embed(degree)
# Compute D^(-1/2) for each matrix in the batch
D_inv_sqrt = torch.inverse(torch.sqrt(D))
# Compute the symmetrically normalized adjacency matrix for each matrix in the batch
normalized_adjacency = torch.bmm(torch.bmm(D_inv_sqrt, A), D_inv_sqrt)
return normalized_adjacency