-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathenv.py
235 lines (213 loc) · 11.4 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
from itertools import product
from utils.graph_controller import GraphController
from utils.target_controller import VTSPGaussian
from matplotlib import pyplot as plt
from gaussian_process import GaussianProcessWrapper
from arguments import arg
def add_t(X, t: float):
return np.concatenate((X, np.zeros((X.shape[0], 1)) + t), axis=1)
class Env:
def __init__(self, graph_size, k_size, budget_size=None, target_size=None, start=None, obstacles=None):
self.graph_size = graph_size
self.k_size = k_size
self.budget = self.budget_init = budget_size
if start is None:
self.start = np.random.rand(1, 2)
else:
self.start = np.array([start])
self.obstacles = obstacles
self.curr_t = 0.0
self.n_targets = target_size
self.visit_t = [[] for _ in range(self.n_targets)]
self.graph_ctrl = GraphController(self.graph_size, self.start, self.k_size, self.obstacles)
self.node_coords, self.graph = self.graph_ctrl.generate_graph()
# underlying distribution
self.underlying_distrib = None
self.ground_truth = None
self.high_info_idx = None
# GP
self.gp_wrapper = None
self.node_feature = None
self.RMSE = None
self.JS, self.JS_init, self.JS_list, self.KL, self.KL_init, self.KL_list = None, None, None, None, None, None
self.cov_trace, self.cov_trace_init = None, None
self.unc, self.unc_list, self.unc_init, self.unc_sum, self.unc_sum_list = None, None, None, None, None
# start point
self.current_node_index = 0
self.dist_residual = 0
self.sample = self.start.copy()
self.random_speed_factor = None
self.d_to_target = None
self.route = []
self.frame_files = []
def reset(self, seed=None):
# underlying distribution
if seed:
np.random.seed(seed)
self.underlying_distrib = VTSPGaussian(n_targets=self.n_targets)
self.ground_truth = self.get_ground_truth() # (1600, n_targets)
self.high_info_idx = self.get_high_info_idx() if arg.high_info_thre else None
# initialize GP
self.curr_t = 0.0
self.visit_t = [[] for _ in range(self.n_targets)]
self.gp_wrapper = GaussianProcessWrapper(self.n_targets, self.node_coords)
if arg.prior_measurement:
node_prior = self.underlying_distrib.mean
self.gp_wrapper.add_init_measures(add_t(node_prior, self.curr_t))
self.gp_wrapper.update_gps()
self.node_feature = self.gp_wrapper.update_node_feature(self.curr_t)
# initialize evaluations
self.RMSE = self.gp_wrapper.eval_avg_RMSE(self.ground_truth, self.curr_t)
self.cov_trace = self.gp_wrapper.eval_avg_cov_trace(self.curr_t, self.high_info_idx)
self.unc, self.unc_list = self.gp_wrapper.eval_avg_unc(self.curr_t, self.high_info_idx, return_all=True)
self.JS, self.JS_list = self.gp_wrapper.eval_avg_JS(self.ground_truth, self.curr_t, return_all=True)
self.KL, self.KL_list = self.gp_wrapper.eval_avg_KL(self.ground_truth, self.curr_t, return_all=True)
self.unc_sum, self.unc_sum_list = self.gp_wrapper.eval_avg_unc_sum(self.unc_list, self.high_info_idx, return_all=True)
self.JS_init = self.JS
self.KL_init = self.KL
self.cov_trace_init = self.cov_trace
self.unc_init = self.unc
self.budget = self.budget_init
self.current_node_index = 0
self.dist_residual = 0
self.sample = self.start.copy()
self.random_speed_factor = np.random.rand()
self.d_to_target = np.linalg.norm(self.sample - self.underlying_distrib.mean, axis=1)
self.route = []
return self.node_coords, self.graph, self.node_feature, self.budget
def step(self, next_node_index, global_step=0, eval_speed=None):
reward = 0
sample_length = 0.1
metrics = {'budget': [], 'dtotarget': [], 'rmse': [], 'jsd': [], 'jsdall': [], 'jsdstd': [], 'unc': [], 'uncall': [], 'uncstd': []}
alpha = min(global_step // 1000 * 0.1, 1) if arg.curriculum else 1 # 10k episodes
d_len = np.linalg.norm(self.node_coords[next_node_index] - self.node_coords[self.current_node_index])
remain_length = d_len
next_length = sample_length - self.dist_residual
no_sample = True
while remain_length > next_length:
if no_sample:
self.sample = (self.node_coords[next_node_index] - self.node_coords[self.current_node_index]) * \
next_length / d_len + self.node_coords[self.current_node_index]
else:
self.sample = (self.node_coords[next_node_index] - self.node_coords[self.current_node_index]) * \
next_length / d_len + self.sample
if not eval_speed:
steplen = 0.1 * sample_length * alpha * self.random_speed_factor # target speed at least 10x slower
else:
steplen = eval_speed * sample_length
self.curr_t += sample_length
self.budget -= sample_length
self.underlying_distrib.step(steplen)
target_mean = self.underlying_distrib.mean
self.d_to_target = np.linalg.norm(self.sample - target_mean, axis=1)
for idx in range(self.n_targets):
if self.d_to_target[idx] < 0.1: # FOV
measure_coord = target_mean[idx]
measure_value = 1.0
self.visit_t[idx] += [self.curr_t]
else:
measure_coord = self.sample
measure_value = 0.0
self.gp_wrapper.GPs[idx].add_observed_point(add_t(measure_coord.reshape(-1, 2), self.curr_t), measure_value)
remain_length -= next_length
next_length = sample_length
no_sample = False
if eval_speed and self.gp_wrapper.GPs[0].observed_points: # only in testing
self.gp_wrapper.update_gps()
metrics['budget'] += [self.budget_init - self.budget]
metrics['dtotarget'] += [self.d_to_target]
metrics['rmse'] += [self.gp_wrapper.eval_avg_RMSE(self.ground_truth, self.curr_t)]
JS, JS_list = self.gp_wrapper.eval_avg_JS(self.ground_truth, self.curr_t, return_all=True)
metrics['jsd'] += [JS]
metrics['jsdall'] += [JS_list]
metrics['jsdstd'] += [np.std(JS_list)]
unc, unc_list = self.gp_wrapper.eval_avg_unc(self.curr_t, self.high_info_idx, return_all=True)
metrics['unc'] += [unc]
metrics['uncall'] += [unc_list]
metrics['uncstd'] += [np.std(unc_list)]
if self.gp_wrapper.GPs[0].observed_points:
self.gp_wrapper.update_gps()
self.dist_residual = self.dist_residual + remain_length if no_sample else remain_length
actual_t = self.curr_t + self.dist_residual
actual_budget = self.budget - self.dist_residual
self.node_feature = self.gp_wrapper.update_node_feature(actual_t)
self.ground_truth = self.get_ground_truth()
self.high_info_idx = self.get_high_info_idx() if arg.high_info_thre else None
self.RMSE = self.gp_wrapper.eval_avg_RMSE(self.ground_truth, actual_t)
cov_trace = self.gp_wrapper.eval_avg_cov_trace(actual_t, self.high_info_idx)
unc, unc_list = self.gp_wrapper.eval_avg_unc(actual_t, self.high_info_idx, return_all=True)
unc_sum, unc_sum_list = self.gp_wrapper.eval_avg_unc_sum(self.unc_list, self.high_info_idx, return_all=True)
JS, JS_list = self.gp_wrapper.eval_avg_JS(self.ground_truth, actual_t, return_all=True)
KL, KL_list = self.gp_wrapper.eval_avg_KL(self.ground_truth, actual_t, return_all=True)
r = 0
for i in range(self.n_targets):
r += max(self.unc_list[i] - unc_list[i], 0)
reward += 5 * r - 0.1
self.JS, self.JS_list = JS, JS_list
self.KL, self.KL_list = KL, KL_list
self.cov_trace = cov_trace
self.unc, self.unc_list = unc, unc_list
self.unc_sum, self.unc_sum_list = unc_sum, unc_sum_list
self.route += [next_node_index]
self.current_node_index = next_node_index
done = True if actual_budget <= 0 else False
return reward, done, self.node_feature, actual_budget, metrics
def get_ground_truth(self):
x1 = np.linspace(0, 1, 40)
x2 = np.linspace(0, 1, 40)
x1x2 = np.array(list(product(x1, x2)))
ground_truth = self.underlying_distrib.fn(x1x2)
return ground_truth
def get_high_info_idx(self):
high_info_idx = []
for i in range(self.n_targets):
idx = np.argwhere(self.ground_truth[:, i] > arg.high_info_thre)
high_info_idx += [idx.squeeze(1)]
return high_info_idx
def plot(self, route, n, step, path, budget_list, rew_list, div_list):
# Plotting shorest path
div_list = np.array(div_list)
y_pred_sum = []
plt.switch_backend('agg')
plt.figure(figsize=(self.n_targets*2.8+3.6, 6))
target_cmap = ['r', 'g', 'b', 'm', 'y', 'c', 'lightcoral', 'lightgreen', 'lightblue', 'orange', 'gold', 'pink']
assert len(target_cmap) >= self.n_targets
target_mean = self.underlying_distrib.mean
for i, gp in enumerate(self.gp_wrapper.GPs):
y_pred = gp.plot(self.ground_truth, target_id=i, target_num=self.n_targets, target_loc=target_mean,
all_pred=y_pred_sum, high_idx=self.high_info_idx, agent_loc=self.node_coords[self.current_node_index])
y_pred_sum.append(y_pred)
# plt.scatter(self.start[:, 0], self.start[:, 1], c='r', s=15, zorder=10)
points_display = [(self.graph_ctrl.find_point_from_node(path)) for path in route]
x = [item[0] for item in points_display]
y = [item[1] for item in points_display]
plt.scatter(x[-1], y[-1], c='c', s=15, zorder=10)
for i in range(len(x) - 1):
alpha = max(0.02 * (i-len(x)) + 1, 0.1)
plt.plot(x[i:i + 2], y[i:i + 2], c='white', linewidth=2, zorder=5, alpha=alpha)
if target_mean[0] is not None: # target location
for i, mean in enumerate(target_mean):
plt.scatter(*mean, c=target_cmap[i], s=10, marker='s')
plt.subplot(2, self.n_targets+1, self.n_targets+3)
for i, mean in enumerate(target_mean):
plt.scatter(*mean, c=target_cmap[i], s=10, marker='s')
ax1 = plt.subplot(2, self.n_targets+1, 2*self.n_targets+2)
plt.grid(linestyle='--')
plt.xlim(0, self.budget_init)
plt.ylim(0, 1.4)
for target_div in range(div_list.shape[1]): # chart
plt.plot(budget_list, div_list[:, target_div], alpha=0.5, c=target_cmap[target_div])
# plt.plot(budget_list, div_list.mean(axis=1), 'k--', alpha=0.7)
plt.ylabel('JSDiv')
plt.title('{:g}/{:g} Reward:{:.3f}'.format(self.budget_init - self.budget, self.budget_init, rew_list[-1]))
# ax2 = ax1.twinx()
# ax2.plot(budget_list, rew_list, 'r--', alpha=0.5)
# ax2.set_ylim([-2, 2])
# ax2.set_ylabel('Reward(r)')
plt.tight_layout()
plt.savefig('{}/{}_{}_samples.png'.format(path, n, step, self.graph_size), dpi=150)
frame = '{}/{}_{}_samples.png'.format(path, n, step, self.graph_size)
self.frame_files.append(frame)
if __name__ == '__main__':
pass