-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdriver.py
247 lines (219 loc) · 11.5 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
import ray
import os
import numpy as np
import wandb
from torch.cuda.amp.grad_scaler import GradScaler
from torch.cuda.amp.autocast_mode import autocast
from network import AttentionNet
from runner import Runner
from arguments import arg
class Logger:
def __init__(self):
self.net = None
self.optimizer = None
self.lr_scheduler = None
self.cuda_devices = str(arg.cuda_devices)[1:-1]
self.writer = SummaryWriter(arg.train_path) if arg.save_files else None
self.episode_buffer_keys = ['history', 'edge', 'dist', 'dt', 'nodeidx', 'logp', 'action', 'value',
'temporalmask', 'spatiomask', 'spatiope', 'done', 'reward', 'advantage', 'return']
self.metric_names = ['avgnvisit', 'stdnvisit', 'avggapvisit', 'stdgapvisit', 'avgrmse', 'avgunc', 'avgjsd',
'avgkld', 'stdunc', 'stdjsd', 'covtr', 'f1', 'mi', 'js', 'rmse', 'scalex', 'scalet']
np.random.seed(0)
print('=== Welcome to STAMP! ===\n'
f'Initializing : {arg.run_name}\n'
f'Minibatch size : {arg.minibatch_size}, Buffer size : {arg.buffer_size}')
if self.cuda_devices:
os.environ['CUDA_VISIBLE_DEVICES'] = self.cuda_devices
print(f'cuda devices : {self.cuda_devices} on', torch.cuda.get_device_name())
ray.init()
if arg.use_wandb:
wandb.init(project=arg.project_name, name=arg.run_name, entity='your_entity', config=vars(arg),
notes=arg.wandb_notes, resume='allow', id=arg.wandb_id)
if arg.save_files: os.makedirs(arg.model_path, exist_ok=True)
if arg.save_files: os.makedirs(arg.gifs_path, exist_ok=True)
def set(self, net, optimizer, lr_scheduler):
self.net = net
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
def write_to_board(self, data, curr_episode):
data = np.array(data)
data = list(np.nanmean(data, axis=0))
reward, value, p_loss, v_loss, entropy, grad_norm, returns, clipfrac, approx_kl, \
avg_nvisit, std_nvisit, avg_visitgap, std_visitgap, avg_RMSE, avg_unc, avg_JSD, avg_KLD, std_unc, std_JSD, \
cov_tr, F1, MI, JSD, RMSE, sx, st = data
metrics = {'Loss/Learning Rate': self.lr_scheduler.get_last_lr()[0],
'Loss/Value': value,
'Loss/Policy Loss': p_loss,
'Loss/Value Loss': v_loss,
'Loss/Entropy': entropy,
'Loss/Grad Norm': grad_norm,
'Loss/Clip Frac': clipfrac,
'Loss/Approx Policy KL': approx_kl,
'Loss/Reward': reward,
'Loss/Return': returns,
'Perf/Average Visit Times': avg_nvisit,
'Perf/Stddev Visit Times': std_nvisit,
'Perf/Average Visit Gap': avg_visitgap,
'Perf/Stddev Visit Gap': std_visitgap,
'Perf/Average JS Div': avg_JSD,
'Perf/Average KL Div': avg_KLD,
'Perf/Average RMSE': avg_RMSE,
'Perf/Average Unc': avg_unc,
'Perf/Stddev Unc': std_unc,
'Perf/Stddev JS Div': std_JSD,
'Perf/JS Div': JSD,
'Perf/RMSE': RMSE,
'Perf/F1 Score': F1,
'GP/Mutual Info': MI,
'GP/Cov Trace': cov_tr,
'GP/Length Scale x': sx,
'GP/Length Scale t': st
}
for k, v in metrics.items():
self.writer.add_scalar(tag=k, scalar_value=v, global_step=curr_episode)
if arg.use_wandb:
wandb.log(metrics, step=curr_episode)
def load_saved_model(self):
print('Loading model :', arg.run_name)
checkpoint = torch.load(arg.model_path + '/checkpoint.pth')
self.net.load_state_dict(checkpoint['model'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.lr_scheduler.load_state_dict(checkpoint['lr_decay'])
curr_episode = checkpoint['episode']
print("Current episode set to :", curr_episode)
print('Learning rate :', self.optimizer.state_dict()['param_groups'][0]['lr'])
return curr_episode
def save_model(self, curr_episode):
print('Saving model', end='\n')
checkpoint = {"model": self.net.state_dict(),
"optimizer": self.optimizer.state_dict(),
"episode": curr_episode,
"lr_decay": self.lr_scheduler.state_dict()}
path_checkpoint = "./" + arg.model_path + "/checkpoint.pth"
torch.save(checkpoint, path_checkpoint)
def main():
logger = Logger()
device = torch.device('cuda') if arg.use_gpu_driver else torch.device('cpu')
local_device = torch.device('cuda') if arg.use_gpu_runner else torch.device('cpu')
global_network = AttentionNet(arg.embedding_dim).to(device)
# global_network.share_memory()
global_optimizer = optim.Adam(global_network.parameters(), lr=arg.lr)
lr_decay = optim.lr_scheduler.StepLR(global_optimizer, step_size=arg.lr_decay_step, gamma=0.96)
logger.set(global_network, global_optimizer, lr_decay)
curr_episode = 0
training_data = []
if arg.load_model:
curr_episode = logger.load_saved_model()
# launch meta agents
meta_runners = [Runner.remote(i) for i in range(arg.num_meta)]
# launch the first job on each runner
if arg.use_wandb: wandb.watch(global_network, log_freq=500, log_graph=True)
dp_global_network = nn.DataParallel(global_network)
try:
while True:
meta_jobs = []
buffer = {k: [] for k in logger.episode_buffer_keys}
buffer_idxs = np.arange(arg.buffer_size)
budget_size = np.random.uniform(*arg.budget_size)
graph_size = np.random.randint(*arg.graph_size)
history_size = np.random.randint(*arg.history_size)
target_size = np.random.randint(*arg.target_size)
# get global weights
if device != local_device:
weights = global_network.to(local_device).state_dict()
global_network.to(device)
else:
weights = global_network.state_dict()
weights_id = ray.put(weights)
for i, meta_agent in enumerate(meta_runners):
meta_jobs.append(meta_agent.job.remote(weights_id, curr_episode, budget_size, graph_size, history_size,
target_size))
curr_episode += 1
done_id, meta_jobs = ray.wait(meta_jobs, num_returns=arg.num_meta)
done_jobs = ray.get(done_id)
# random.shuffle(done_jobs)
perf_metrics = {}
for n in logger.metric_names:
perf_metrics[n] = []
for job in done_jobs:
job_results, metrics = job
for k in job_results.keys():
buffer[k] += job_results[k]
for n in logger.metric_names:
perf_metrics[n].append(metrics[n])
b_history_inputs = torch.stack(buffer['history'], dim=0)
b_edge_inputs = torch.stack(buffer['edge'], dim=0)
b_dist_inputs = torch.stack(buffer['dist'], dim=0)
b_dt_inputs = torch.stack(buffer['dt'], dim=0)
b_current_inputs = torch.stack(buffer['nodeidx'], dim=0)
b_logp = torch.stack(buffer['logp'], dim=0)
b_action = torch.stack(buffer['action'], dim=0)
b_value = torch.stack(buffer['value'], dim=0)
b_reward = torch.stack(buffer['reward'], dim=0)
b_return = torch.stack(buffer['return'], dim=0)
b_advantage = torch.stack(buffer['advantage'], dim=0)
b_temporal_mask = torch.stack(buffer['temporalmask'])
b_spatio_mask = torch.stack(buffer['spatiomask'])
b_pos_encoding = torch.stack(buffer['spatiope'])
scaler = GradScaler()
for epoch in range(arg.update_epochs):
np.random.shuffle(buffer_idxs)
for start in range(0, arg.buffer_size, arg.minibatch_size):
end = start + arg.minibatch_size
mb_idxs = buffer_idxs[start:end]
mb_old_logp = b_logp[mb_idxs].to(device)
mb_history_inputs = b_history_inputs[mb_idxs].to(device)
mb_edge_inputs = b_edge_inputs[mb_idxs].to(device)
mb_dist_inputs = b_dist_inputs[mb_idxs].to(device)
mb_dt_inputs = b_dt_inputs[mb_idxs].to(device)
mb_current_inputs = b_current_inputs[mb_idxs].to(device)
mb_action = b_action[mb_idxs].to(device)
mb_return = b_return[mb_idxs].to(device)
mb_advantage = b_advantage[mb_idxs].to(device)
mb_temporal_mask = b_temporal_mask[mb_idxs].to(device)
mb_spatio_mask = b_spatio_mask[mb_idxs].to(device)
mb_pos_encoding = b_pos_encoding[mb_idxs].to(device)
with autocast():
logp_list, value = dp_global_network(mb_history_inputs, mb_edge_inputs, mb_dist_inputs, mb_dt_inputs,
mb_current_inputs, mb_pos_encoding, mb_temporal_mask, mb_spatio_mask)
logp = torch.gather(logp_list, 1, mb_action.squeeze(1)).unsqueeze(1)
logratio = logp - mb_old_logp.detach()
ratio = logratio.exp()
surr1 = mb_advantage.detach() * ratio
surr2 = mb_advantage.detach() * ratio.clamp(1-0.2, 1+0.2)
policy_loss = -torch.min(surr1, surr2).mean()
value_loss = nn.MSELoss()(value, mb_return).mean()
entropy = -(logp_list * logp_list.exp()).sum(dim=-1).mean()
loss = policy_loss + 0.2 * value_loss - 0.0 * entropy
global_optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.unscale_(global_optimizer)
grad_norm = nn.utils.clip_grad_norm_(global_network.parameters(), max_norm=5, norm_type=2)
scaler.step(global_optimizer)
scaler.update()
lr_decay.step()
with torch.no_grad():
clip_frac = ((ratio - 1).abs() > 0.2).float().mean()
approx_kl = ((ratio - 1) - logratio).mean()
perf_data = []
for n in logger.metric_names:
perf_data.append(np.nanmean(perf_metrics[n]))
data = [b_reward.mean().item(), b_value.mean().item(), policy_loss.item(), value_loss.item(), entropy.item(),
grad_norm.item(), b_return.mean().item(), clip_frac.item(), approx_kl.item(), *perf_data]
training_data.append(data)
if len(training_data) >= arg.summary_window and arg.save_files:
logger.write_to_board(training_data, curr_episode)
training_data = []
if curr_episode % 64 == 0 and arg.save_files:
logger.save_model(curr_episode)
except KeyboardInterrupt:
print('User interrupt, abort remotes...')
if arg.use_wandb: wandb.finish(quiet=True)
for runner in meta_runners:
ray.kill(runner)
if __name__ == "__main__":
main()