-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathnet.py
124 lines (109 loc) · 5.61 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp.autocast_mode import autocast
from alg_parameters import *
from transformer.encoder_model import TransformerEncoder
def normalized_columns_initializer(weights, std=1.0):
"""weight initializer"""
out = torch.randn(weights.size())
out *= std / torch.sqrt(out.pow(2).sum(1).expand_as(out))
return out
def weights_init(m):
"""initialize weights"""
class_name = m.__class__.__name__
if class_name.find('Conv') != -1:
weight_shape = list(m.weight.data.size())
fan_in = np.prod(weight_shape[1:4])
fan_out = np.prod(weight_shape[2:4]) * weight_shape[0]
w_bound = np.sqrt(6. / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
m.bias.data.fill_(0)
elif class_name.find('Linear') != -1:
weight_shape = list(m.weight.data.size())
fan_in = weight_shape[1]
fan_out = weight_shape[0]
w_bound = np.sqrt(6. / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
if m.bias is not None:
m.bias.data.fill_(0)
class SCRIMPNet(nn.Module):
"""network with transformer-based communication mechanism"""
def __init__(self):
"""initialization"""
super(SCRIMPNet, self).__init__()
# observation encoder
self.conv1 = nn.Conv2d(NetParameters.NUM_CHANNEL, NetParameters.NET_SIZE // 4, 2, 1, 1)
self.conv1a = nn.Conv2d(NetParameters.NET_SIZE // 4, NetParameters.NET_SIZE // 4, 2, 1, 1)
self.conv1b = nn.Conv2d(NetParameters.NET_SIZE // 4, NetParameters.NET_SIZE // 4, 2, 1, 1)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(NetParameters.NET_SIZE // 4, NetParameters.NET_SIZE // 2, 2, 1, 1)
self.conv2a = nn.Conv2d(NetParameters.NET_SIZE // 2, NetParameters.NET_SIZE // 2, 2, 1, 1)
self.conv2b = nn.Conv2d(NetParameters.NET_SIZE // 2, NetParameters.NET_SIZE // 2, 2, 1, 1)
self.pool2 = nn.MaxPool2d(2)
self.conv3 = nn.Conv2d(NetParameters.NET_SIZE // 2, NetParameters.NET_SIZE - NetParameters.GOAL_REPR_SIZE, 3,
1, 0)
self.fully_connected_1 = nn.Linear(NetParameters.VECTOR_LEN, NetParameters.GOAL_REPR_SIZE)
self.fully_connected_2 = nn.Linear(NetParameters.NET_SIZE, NetParameters.NET_SIZE)
self.fully_connected_3 = nn.Linear(NetParameters.NET_SIZE, NetParameters.NET_SIZE)
self.lstm_memory = nn.LSTMCell(input_size=NetParameters.NET_SIZE, hidden_size=NetParameters.NET_SIZE // 2)
# output heads
self.fully_connected_4 = nn.Linear(NetParameters.NET_SIZE * 2 + NetParameters.NET_SIZE // 2,
NetParameters.NET_SIZE)
self.policy_layer = nn.Linear(NetParameters.NET_SIZE, EnvParameters.N_ACTIONS)
self.softmax_layer = nn.Softmax(dim=-1)
self.value_layer_in = nn.Linear(NetParameters.NET_SIZE, 1)
self.value_layer_ex = nn.Linear(NetParameters.NET_SIZE, 1)
self.blocking_layer = nn.Linear(NetParameters.NET_SIZE, 1)
self.message_layer = nn.Linear(NetParameters.NET_SIZE, NetParameters.NET_SIZE)
# transformer based communication block
self.communication_layer = TransformerEncoder(d_model=NetParameters.D_MODEL,
d_hidden=NetParameters.D_HIDDEN,
n_layers=NetParameters.N_LAYERS, n_head=NetParameters.N_HEAD,
d_k=NetParameters.D_K,
d_v=NetParameters.D_V, n_position=NetParameters.N_POSITION)
self.apply(weights_init)
for p in self.communication_layer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
@autocast()
def forward(self, obs, vector, input_state, message):
"""run neural network"""
num_agent = obs.shape[1]
obs = torch.reshape(obs, (-1, NetParameters.NUM_CHANNEL, EnvParameters.FOV_SIZE, EnvParameters.FOV_SIZE))
vector = torch.reshape(vector, (-1, NetParameters.VECTOR_LEN))
# matrix input
x_1 = F.relu(self.conv1(obs))
x_1 = F.relu(self.conv1a(x_1))
x_1 = F.relu(self.conv1b(x_1))
x_1 = self.pool1(x_1)
x_1 = F.relu(self.conv2(x_1))
x_1 = F.relu(self.conv2a(x_1))
x_1 = F.relu(self.conv2b(x_1))
x_1 = self.pool2(x_1)
x_1 = self.conv3(x_1)
x_1 = F.relu(x_1.view(x_1.size(0), -1))
# vector input
x_2 = F.relu(self.fully_connected_1(vector))
# Concatenation
x_3 = torch.cat((x_1, x_2), -1)
h1 = F.relu(self.fully_connected_2(x_3))
h1 = self.fully_connected_3(h1)
h2 = F.relu(h1 + x_3)
# LSTM cell
memories, memory_c = self.lstm_memory(h2, input_state)
output_state = (memories, memory_c)
memories = torch.reshape(memories, (-1, num_agent, NetParameters.NET_SIZE // 2))
h2 = torch.reshape(h2, (-1, num_agent, NetParameters.NET_SIZE))
c1 = self.communication_layer(message)
c1 = torch.cat([c1, memories, h2], -1)
c1 = F.relu(self.fully_connected_4(c1))
policy_layer = self.policy_layer(c1)
policy = self.softmax_layer(policy_layer)
policy_sig = torch.sigmoid(policy_layer)
value_in = self.value_layer_in(c1)
value_ex = self.value_layer_ex(c1)
blocking = torch.sigmoid(self.blocking_layer(c1))
message = self.message_layer(c1)
return policy, value_in, value_ex, blocking, policy_sig, output_state, policy_layer, message