-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
165 lines (138 loc) · 7.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.cuda.amp.autocast_mode import autocast
from torch.cuda.amp.grad_scaler import GradScaler
from alg_parameters import *
from net import Net
class Model(object):
"""model0 of agents"""
def __init__(self, env_id, device, global_model=False):
"""initialization"""
self.ID = env_id
self.device = device
self.network = Net().to(device) # neural network
if global_model:
self.net_optimizer = optim.Adam(self.network.parameters(), lr=TrainingParameters.lr, eps=TrainingParameters.opti_eps,weight_decay=TrainingParameters.weight_decay)
self.net_scaler = GradScaler() # automatic mixed precision
def step(self, observation, vector, valid_action, input_state,local_num_agent):
"""using neural network in training for prediction"""
num_invalid = 0
observation = torch.from_numpy(observation).to(self.device)
vector = torch.from_numpy(vector).to(self.device)
ps, v, _, output_state,_= self.network(observation, vector, input_state)
actions = np.zeros(local_num_agent)
ps = np.squeeze(ps.cpu().detach().numpy())
v = v.cpu().detach().numpy()
for i in range(local_num_agent):
if np.argmax(ps[i], axis=-1) not in valid_action[i]:
num_invalid += 1
valid_dist = np.array([ps[i, valid_action[i]]])
valid_dist /= np.sum(valid_dist)
actions[i] = valid_action[i][np.random.choice(range(valid_dist.shape[1]), p=valid_dist.ravel())]
return actions, ps, v, output_state, num_invalid
def value(self, obs, vector, input_state):
"""using neural network to predict state values"""
obs = torch.from_numpy(obs).to(self.device)
vector = torch.from_numpy(vector).to(self.device)
_, v, _, _,_= self.network(obs, vector, input_state)
v = v.cpu().detach().numpy()
return v
def train(self, observation, vector, returns, old_v, action,
old_ps, input_state, train_valid):
"""train model0 by reinforcement learning"""
self.net_optimizer.zero_grad()
# from numpy to torch
observation = torch.from_numpy(observation).to(self.device)
vector = torch.from_numpy(vector).to(self.device)
returns = torch.from_numpy(returns).to(self.device)
old_v = torch.from_numpy(old_v).to(self.device)
action = torch.from_numpy(action).to(self.device)
action = torch.unsqueeze(action, -1)
old_ps = torch.from_numpy(old_ps).to(self.device)
train_valid = torch.from_numpy(train_valid).to(self.device)
input_state_h = torch.from_numpy(
np.reshape(input_state[:, 0], (-1, NetParameters.NET_SIZE))).to(self.device)
input_state_c = torch.from_numpy(
np.reshape(input_state[:, 1], (-1, NetParameters.NET_SIZE))).to(self.device)
input_state = (input_state_h, input_state_c)
advantage = returns - old_v
advantage = (advantage - advantage.mean()) / (advantage.std() + 1e-6)
with autocast():
new_ps, new_v, policy_sig, _,_ = self.network(observation, vector, input_state)
new_p = new_ps.gather(-1, action)
old_p = old_ps.gather(-1, action)
ratio = torch.exp(torch.log(torch.clamp(new_p, 1e-6, 1.0)) - torch.log(torch.clamp(old_p, 1e-6, 1.0)))
entropy = torch.mean(-torch.sum(new_ps * torch.log(torch.clamp(new_ps, 1e-6, 1.0)), dim=-1, keepdim=True))
# critic loss
new_v = torch.squeeze(new_v)
new_v_clipped = old_v + torch.clamp(new_v - old_v, - TrainingParameters.CLIP_RANGE,
TrainingParameters.CLIP_RANGE)
value_losses1 = torch.square(new_v- returns)
value_losses2 = torch.square(new_v_clipped - returns)
critic_loss = torch.mean(torch.maximum(value_losses1, value_losses2))
# actor loss
ratio = torch.squeeze(ratio)
policy_losses = advantage * ratio
policy_losses2 = advantage * torch.clamp(ratio, 1.0 - TrainingParameters.CLIP_RANGE,
1.0 + TrainingParameters.CLIP_RANGE)
policy_loss = torch.mean(torch.min(policy_losses, policy_losses2))
# valid loss
valid_loss = - torch.mean(torch.log(torch.clamp(policy_sig, 1e-6, 1.0 - 1e-6)) *
train_valid + torch.log(torch.clamp(1 - policy_sig, 1e-6, 1.0 - 1e-6)) * (
1 - train_valid))
# total loss
all_loss = -policy_loss - entropy * TrainingParameters.ENTROPY_COEF + \
TrainingParameters.VALUE_COEF * critic_loss + TrainingParameters.VALID_COEF * valid_loss
clip_frac = torch.mean(torch.greater(torch.abs(ratio - 1.0), TrainingParameters.CLIP_RANGE).float())
self.net_scaler.scale(all_loss).backward()
self.net_scaler.unscale_(self.net_optimizer)
# Clip gradient
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), TrainingParameters.MAX_GRAD_NORM)
self.net_scaler.step(self.net_optimizer)
self.net_scaler.update()
# for recording
prop_policy=-policy_loss/ (all_loss+1e-6)
prop_en=-entropy * TrainingParameters.ENTROPY_COEF/ (all_loss+1e-6)
prop_v = TrainingParameters.VALUE_COEF * critic_loss / (all_loss+1e-6)
prop_valid = TrainingParameters.VALID_COEF * valid_loss / (all_loss+1e-6)
stats_list = [all_loss.cpu().detach().numpy(), policy_loss.cpu().detach().numpy(),
entropy.cpu().detach().numpy(),
critic_loss.cpu().detach().numpy(),
valid_loss.cpu().detach().numpy(),
clip_frac.cpu().detach().numpy(), grad_norm.cpu().detach().numpy(),
torch.mean(advantage).cpu().detach().numpy(),prop_policy.cpu().detach().numpy(),
prop_en.cpu().detach().numpy(),prop_v.cpu().detach().numpy(),prop_valid.cpu().detach().numpy()]
return stats_list
def set_weights(self, weights):
"""load global weights to local models"""
self.network.load_state_dict(weights)
def generate_state(self, obs, vector, input_state):
"""generate corresponding hidden states and messages in imitation learning"""
obs = torch.from_numpy(obs).to(self.device)
vector = torch.from_numpy(vector).to(self.device)
_, _, _, output_state,_ = self.network(obs, vector, input_state)
return output_state
def imitation_train(self, observation, vector, optimal_action, input_state):
"""train model0 by imitation learning"""
self.net_optimizer.zero_grad()
observation = torch.from_numpy(observation).to(self.device)
vector = torch.from_numpy(vector).to(self.device)
optimal_action = torch.from_numpy(optimal_action).to(self.device)
input_state_h = torch.from_numpy(
np.reshape(input_state[:, 0], (-1, NetParameters.NET_SIZE))).to(self.device)
input_state_c = torch.from_numpy(
np.reshape(input_state[:, 1], (-1, NetParameters.NET_SIZE))).to(self.device)
input_state = (input_state_h, input_state_c)
with autocast():
_, _, _, _, logits = self.network(observation, vector, input_state)
logits = torch.swapaxes(logits, 1, 2)
imitation_loss = F.cross_entropy(logits, optimal_action)
self.net_scaler.scale(imitation_loss).backward()
self.net_scaler.unscale_(self.net_optimizer)
# clip gradient
grad_norm = torch.nn.utils.clip_grad_norm_(self.network.parameters(), TrainingParameters.MAX_GRAD_NORM)
self.net_scaler.step(self.net_optimizer)
self.net_scaler.update()
return [imitation_loss.cpu().detach().numpy(), grad_norm.cpu().detach().numpy()] # for recording