-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrunner.py
125 lines (107 loc) · 4.93 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
import torch.optim as optim
import numpy as np
import ray
from config import config
from model import Model
from env import Env
cfg = config()
@ray.remote(num_gpus= cfg.number_of_gpu/cfg.meta_agent_amount,num_cpus=1)
class Runner(object):
def __init__(self, metaAgentID, cfg, imitation=False, decode_type='sampling'):
self.ID = metaAgentID
self.model = Model(cfg)
self.baseline_model = Model(cfg,decode_type='greedy')
self.model.to(cfg.device)
self.baseline_model.to(cfg.device)
self.local_model_gradient = []
self.reward_buffer = []
self.max_length_buffer = []
self.baseline_buffer = []
self.episode_buffer = []
for i in range(5):
self.episode_buffer.append([])
self.decode_type = decode_type
self.imitation = imitation
self.cfg = cfg
def run_model(self, env, routes=None):
return self.model(env, self.cfg.agent_amount, routes)
def run_baseline(self, env):
return self.baseline_model(env,self.cfg.agent_amount)
def get_logp(self):
agent_inputs = torch.cat(self.episode_buffer[0]).squeeze(0).cuda()
depot_inputs = torch.cat(self.episode_buffer[1]).squeeze(0).cuda()
city_inputs = torch.cat(self.episode_buffer[2]).squeeze(0).cuda()
mask = torch.cat(self.episode_buffer[3]).squeeze(0).cuda()
agent_feature = self.model.local_agent_encoder(agent_inputs)
target_feature = self.model.local_target_encoder(depot_inputs, city_inputs)
_, log_prob = self.model.local_decoder(target_feature=target_feature,
current_state=torch.mean(target_feature,dim=1).unsqueeze(1),
agent_feature=agent_feature,
mask=mask,
decode_type=self.decode_type)
action_list=torch.cat(self.episode_buffer[4]).squeeze(0).cuda()
logp=torch.gather(log_prob,1,action_list.unsqueeze(1))
entropy=(log_prob*log_prob.exp()).sum(dim=-1).mean()
return logp, entropy
def get_advantage(self, reward_buffer, baseline):
advantage = (reward_buffer - baseline)
return advantage
def get_loss(self, advantage, log_p_buffer, entropy_buffer):
policy_loss = -log_p_buffer.squeeze(1) * advantage.detach()
loss = policy_loss.sum()/(self.cfg.batch_size*self.cfg.agent_amount)
return loss
def get_gradient(self, loss):
self.model.zero_grad()
loss.backward()
g = torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1000, norm_type=2)
self.local_model_gradient = []
for local_param in self.model.parameters():
self.local_model_gradient.append(local_param.grad)
return g
def set_model_weights(self, global_weights):
self.model.load_state_dict(global_weights)
def set_baseline_model_weights(self, baseline_weights):
self.baseline_model.load_state_dict(baseline_weights)
def sample(self):
env = Env(self.cfg)
with torch.no_grad():
route_set,reward, reward_scalar, max_length, episode_buffer = self.run_model(env)
env.global_mask = env.generate_mask()
with torch.no_grad():
_, _, baseline, _ , _ = self.run_baseline(env)
self.reward_buffer += reward
self.max_length_buffer.append(max_length)
self.baseline_buffer += baseline.expand_as(reward)
for i in range(5):
self.episode_buffer[i] += episode_buffer[i]
def return_gradient(self):
reward_buffer = torch.stack(self.reward_buffer)
log_p_buffer, entropy_loss = self.get_logp()
baseline_buffer = torch.stack(self.baseline_buffer)
advantage = self.get_advantage(reward_buffer=reward_buffer, baseline=baseline_buffer)
loss = self.get_loss(advantage, log_p_buffer, entropy_loss)
grad_norm = self.get_gradient(loss)
max_length = torch.stack(self.max_length_buffer).squeeze(0).mean()
self.reward_buffer = []
self.episode_buffer = []
for i in range(5):
self.episode_buffer.append([])
self.max_length_buffer = []
self.baseline_buffer = []
# if you want to random the number of cities and agents
# self.cfg.agent_amount = np.random.randint(5,10)
# self.cfg.target_size = np.random.randint(50,200)
return self.local_model_gradient, loss.mean().item(), grad_norm, advantage.mean().item(), max_length.item(), entropy_loss.mean().item(),-max_length.item()
if __name__ == '__main__':
cfg = config()
cfg.agent_amount = 5
cfg.target_size = 20
env = Env(cfg)
runner = Runner(1)
for i in range(16):
runner.sample()
for i in range(5):
print(torch.cat(runner.episode_buffer[i]).squeeze(0).size())
runner.return_gradient()
# print(reward)