-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathattention_net.py
363 lines (294 loc) · 15.6 KB
/
attention_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.nn as nn
import math
import numpy as np
from torch.nn.utils.rnn import pad_sequence
from torch.cuda.amp.autocast_mode import autocast
from parameters import *
class SingleHeadAttention(nn.Module):
def __init__(self, embedding_dim):
super(SingleHeadAttention, self).__init__()
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = embedding_dim
self.key_dim = self.value_dim
self.tanh_clipping = 10
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.input_dim, self.key_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, h=None, mask=None):
"""
:param q: queries (batch_size, n_query, input_dim)
:param h: data (batch_size, graph_size, input_dim)
:param mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1)
Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency)
:return:
"""
if h is None:
h = q
batch_size, target_size, input_dim = h.size()
n_query = q.size(1) # n_query = target_size in tsp
#assert q.size(0) == batch_size
#assert q.size(2) == input_dim
#assert input_dim == self.input_dim
h_flat = h.reshape(-1, input_dim) # (batch_size*graph_size)*input_dim
q_flat = q.reshape(-1, input_dim) # (batch_size*n_query)*input_dim
shape_k = (batch_size, target_size, -1)
shape_q = (batch_size, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q) # batch_size*n_query*key_dim
K = torch.matmul(h_flat, self.w_key).view(shape_k) # batch_size*targets_size*key_dim
U = self.norm_factor * torch.matmul(Q, K.transpose(1, 2)) # batch_size*n_query*targets_size
U = self.tanh_clipping * torch.tanh(U)
if mask is not None:
mask = mask.view(batch_size, 1, target_size).expand_as(U) # copy for n_heads times
# U = U-1e8*mask # ??
#U[mask.bool()] = -1e8
U[mask.bool()] = -1e4
attention = torch.log_softmax(U, dim=-1) # batch_size*n_query*targets_size
out = attention
return out
class MultiHeadAttention(nn.Module):
def __init__(self, embedding_dim, n_heads=8):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.input_dim = embedding_dim
self.embedding_dim = embedding_dim
self.value_dim = self.embedding_dim // self.n_heads
self.key_dim = self.value_dim
self.norm_factor = 1 / math.sqrt(self.key_dim)
self.w_query = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_key = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.key_dim))
self.w_value = nn.Parameter(torch.Tensor(self.n_heads, self.input_dim, self.value_dim))
self.w_out = nn.Parameter(torch.Tensor(self.n_heads, self.value_dim, self.embedding_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, h=None, mask=None):
"""
:param q: queries (batch_size, n_query, input_dim)
:param h: data (batch_size, graph_size, input_dim)
:param mask: mask (batch_size, n_query, graph_size) or viewable as that (i.e. can be 2 dim if n_query == 1)
Mask should contain 1 if attention is not possible (i.e. mask is negative adjacency)
:return:
"""
if h is None:
h = q
batch_size, target_size, input_dim = h.size()
n_query = q.size(1) # n_query = target_size in tsp
#assert q.size(0) == batch_size
#assert q.size(2) == input_dim
#assert input_dim == self.input_dim
h_flat = h.contiguous().view(-1, input_dim) # (batch_size*graph_size)*input_dim
q_flat = q.contiguous().view(-1, input_dim) # (batch_size*n_query)*input_dim
shape_v = (self.n_heads, batch_size, target_size, -1)
shape_k = (self.n_heads, batch_size, target_size, -1)
shape_q = (self.n_heads, batch_size, n_query, -1)
Q = torch.matmul(q_flat, self.w_query).view(shape_q) # n_heads*batch_size*n_query*key_dim
K = torch.matmul(h_flat, self.w_key).view(shape_k) # n_heads*batch_size*targets_size*key_dim
V = torch.matmul(h_flat, self.w_value).view(shape_v) # n_heads*batch_size*targets_size*value_dim
U = self.norm_factor * torch.matmul(Q, K.transpose(2, 3)) # n_heads*batch_size*n_query*targets_size
if mask is not None:
mask = mask.view(1, batch_size, -1, target_size).expand_as(U) # copy for n_heads times
# U = U.masked_fill(mask == 1, -np.inf)
U[mask.bool()] = -np.inf
attention = torch.softmax(U, dim=-1) # n_heads*batch_size*n_query*targets_size
if mask is not None:
attnc = attention.clone()
attnc[mask.bool()] = 0
# attnc = attnc.masked_fill(mask == 1, 0)
attention = attnc
heads = torch.matmul(attention, V) # n_heads*batch_size*n_query*value_dim
out = torch.mm(
heads.permute(1, 2, 0, 3).reshape(-1, self.n_heads * self.value_dim),
# batch_size*n_query*n_heads*value_dim
self.w_out.view(-1, self.embedding_dim)
# n_heads*value_dim*embedding_dim
).view(batch_size, n_query, self.embedding_dim)
return out # batch_size*n_query*embedding_dim
class Normalization(nn.Module):
def __init__(self, embedding_dim):
super(Normalization, self).__init__()
self.normalizer = nn.LayerNorm(embedding_dim)
def forward(self, input):
return self.normalizer(input.view(-1, input.size(-1))).view(*input.size())
class EncoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(EncoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512), nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, src, mask=None):
h0 = src
h = self.normalization1(src)
h = self.multiHeadAttention(q=h, mask=mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2
class DecoderLayer(nn.Module):
def __init__(self, embedding_dim, n_head):
super(DecoderLayer, self).__init__()
self.multiHeadAttention = MultiHeadAttention(embedding_dim, n_head)
self.normalization1 = Normalization(embedding_dim)
self.feedForward = nn.Sequential(nn.Linear(embedding_dim, 512),
nn.ReLU(inplace=True),
nn.Linear(512, embedding_dim))
self.normalization2 = Normalization(embedding_dim)
def forward(self, tgt, memory, mask=None):
h0 = tgt
tgt = self.normalization1(tgt)
memory = self.normalization1(memory)
h = self.multiHeadAttention(q=tgt, h=memory, mask=mask)
h = h + h0
h1 = h
h = self.normalization2(h)
h = self.feedForward(h)
h2 = h + h1
return h2
class Encoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=3):
super(Encoder, self).__init__()
self.layers = nn.ModuleList(EncoderLayer(embedding_dim, n_head) for i in range(n_layer))
def forward(self, src, mask=None):
for layer in self.layers:
src = layer(src, mask)
return src
class Decoder(nn.Module):
def __init__(self, embedding_dim=128, n_head=8, n_layer=1):
super(Decoder, self).__init__()
self.layers = nn.ModuleList([DecoderLayer(embedding_dim, n_head) for i in range(n_layer)])
def forward(self, tgt, memory, mask=None):
for layer in self.layers:
tgt = layer(tgt, memory, mask)
return tgt
class AttentionNet(nn.Module):
def __init__(self, input_dim, embedding_dim):
super(AttentionNet, self).__init__()
self.initial_embedding = nn.Linear(input_dim, embedding_dim) # layer for non-end position
self.end_embedding = nn.Linear(input_dim, embedding_dim) # embedding layer for end position
self.budget_embedding = nn.Linear(embedding_dim+2, embedding_dim)
self.value_output = nn.Linear(embedding_dim,1)
self.pos_embedding = nn.Linear(32, embedding_dim)
# self.nodes_update_layers = nn.ModuleList([DecoderLayer(embedding_dim, 8) for i in range(3)])
self.current_embedding = nn.Linear(embedding_dim*2, embedding_dim)
self.encoder = Encoder(embedding_dim=embedding_dim, n_head=4, n_layer=1)
self.decoder = Decoder(embedding_dim=embedding_dim, n_head=4, n_layer=1)
self.pointer = SingleHeadAttention(embedding_dim)
self.LSTM = nn.LSTM(embedding_dim, embedding_dim, batch_first=True)
def graph_embedding(self, node_inputs, edge_inputs, pos_encoding, mask=None):
# current_position (batch, 1, 2)
# end_position (batch, 1,2)
# node_inputs (batch, sample_size+2, 2) end position and start position are the first two in the inputs
# edge_inputs (batch, sample_size+2, k_size)
# mask (batch, sample_size+2, k_size)
end_position = node_inputs[:, 0, :].unsqueeze(1)
embedding_feature = torch.cat(
(self.end_embedding(end_position), self.initial_embedding(node_inputs[:, 1:, :])), dim=1)
pos_encoding = self.pos_embedding(pos_encoding)
embedding_feature = embedding_feature + pos_encoding
sample_size = embedding_feature.size()[1]
embedding_dim = embedding_feature.size()[2]
#for layer in self.nodes_update_layers:
# updated_node_feature_list = []
# for i in range(sample_size):
# # print(embedding_feature)
# if i==0:
# updated_node_feature_list.append(embedding_feature[:,i,:].unsqueeze(1))
# else:
# connected_nodes_feature = torch.gather(input=embedding_feature, dim=1,
# index=edge_inputs[:, i, :].unsqueeze(-1).repeat(1, 1,embedding_dim))
# (batch, k_size, embedding_size)
# print(connected_nodes_feature)
# if mask is not None:
# node_mask = mask[:,i,:].unsqueeze(1)
# else:
# node_mask = None
# updated_node_feature_list.append(
# layer(tgt=embedding_feature[:, i, :].unsqueeze(1), memory=connected_nodes_feature,mask=node_mask))
# updated_node_feature = torch.cat(updated_node_feature_list,dim=1)
# embedding_feature = updated_node_feature
# print(embedding_feature.size())
embedding_feature = self.encoder(embedding_feature)
return embedding_feature
def select_next_node(self, embedding_feature, edge_inputs, budget_inputs, current_index, LSTM_h, LSTM_c, mask):
LSTM_h = LSTM_h.permute(1,0,2)
LSTM_c = LSTM_c.permute(1,0,2)
batch_size = edge_inputs.size()[0]
sample_size = edge_inputs.size()[1]
k_size = edge_inputs.size()[2]
current_edge = torch.gather(edge_inputs, 1, current_index.repeat(1, 1, k_size))
# print(current_edge)
current_edge = current_edge.permute(0, 2, 1)
embedding_dim = embedding_feature.size()[2]
th = torch.FloatTensor([ADAPTIVE_TH]).unsqueeze(0).unsqueeze(0).repeat(batch_size, sample_size, 1).to(embedding_feature.device)
embedding_feature = self.budget_embedding(torch.cat((embedding_feature, budget_inputs, th), dim=-1))
connected_nodes_feature = torch.gather(embedding_feature, 1, current_edge.repeat(1, 1, embedding_dim))
connected_nodes_budget = torch.gather(budget_inputs, 1, current_edge)
# print(embedding_feature)
# print(connected_nodes_feature)
current_node_feature = torch.gather(embedding_feature, 1, current_index.repeat(1, 1, embedding_dim))
current_node_feature, (LSTM_h, LSTM_c) = self.LSTM(current_node_feature, (LSTM_h, LSTM_c))
end_node_feature = embedding_feature[:,0,:].unsqueeze(1)
current_node_feature = torch.cat((current_node_feature,end_node_feature),dim=-1)
current_node_feature = self.current_embedding(current_node_feature)
# print(current_node_feature)
if mask is not None:
current_mask = torch.gather(mask, 1, current_index.repeat(1,1,k_size)).to(embedding_feature.device)
# print(current_mask)
else:
current_mask = None
current_mask = torch.zeros((batch_size,1,k_size),dtype=torch.int64).to(embedding_feature.device)
one = torch.ones_like(current_mask, dtype=torch.int64).to(embedding_feature.device)
#print(connected_nodes_budget)
current_mask = torch.where(connected_nodes_budget.permute(0,2,1)>0, current_mask, one)
current_mask[:,:,0] = 1 # don't stay at current position
assert 0 in current_mask
#print(current_mask)
# connected_nodes_feature = self.encoder(connected_nodes_feature, current_mask)
current_feature_prime = self.decoder(current_node_feature, connected_nodes_feature, current_mask)
logp_list = self.pointer(current_feature_prime, connected_nodes_feature, current_mask)
logp_list = logp_list.squeeze(1)
value = self.value_output(current_feature_prime)
LSTM_h = LSTM_h.permute(1,0,2)
LSTM_c = LSTM_c.permute(1,0,2)
return logp_list, value, LSTM_h, LSTM_c
def forward(self, node_inputs, edge_inputs, budget_inputs, current_index, LSTM_h, LSTM_c, pos_encoding, mask=None):
with autocast():
embedding_feature = self.graph_embedding(node_inputs, edge_inputs, pos_encoding, mask=None)
logp_list, value, LSTM_h, LSTM_c = self.select_next_node(embedding_feature, edge_inputs, budget_inputs, current_index, LSTM_h, LSTM_c, mask)
return logp_list, value, LSTM_h, LSTM_c
def padding_inputs(inputs):
seq = pad_sequence(inputs, batch_first=False, padding_value=1)
seq = seq.permute(2,1,0)
mask = torch.zeros_like(seq, dtype=torch.int64)
ones = torch.ones_like(seq,dtype=torch.int64)
mask = torch.where(seq!=1, mask, ones)
# print(mask)
# print(seq.size())
return seq, mask
if __name__ == '__main__':
model = AttentionNet(2, 8, greedy=True)
node_inputs = torch.torch.rand((128, 10, 2))
# print(node_inputs)
edge_inputs = torch.randint(0, 10, (128, 10, 5))
edge_inputs_list = []
# for i in range(edge_inputs.size()[1]):
# edge_inputs_list.append(edge_inputs[:,i].permute(1,0))
# edge_inputs_list.append(torch.randint(0, 10, (8, 1)))
# edge_inputs, mask = padding_inputs(edge_inputs_list)
current_index = torch.ones(size=(128, 1, 1), dtype=torch.int64)
next_node, logp_list, value = model(node_inputs, edge_inputs, current_index)
print(next_node.size())
print(logp_list.size())
print(value.size())