-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrace.cpp
544 lines (477 loc) · 22.9 KB
/
trace.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
// Copyright (c) 2022 Graphcore Ltd. All rights reserved.
// Main ray/path tracing programs for IPU, CPU, and Embree.
#include <app_utils.hpp>
std::vector<embree_utils::TraceResult> renderEmbree(const SceneRef& data, embree_utils::EmbreeScene& embreeScene, cv::Mat& image) {
std::vector<embree_utils::TraceResult> rayStream(data.window.w * data.window.h);
initPerspectiveRayStream(rayStream, image, data);
zeroRgb(rayStream);
embreeScene.commitScene();
// Convert stream:
std::vector<RTCRayHit> hitStream;
hitStream.reserve(rayStream.size());
for (const auto& r : rayStream) {
hitStream.push_back(convertHitRecord(r.h));
}
if (((std::size_t)(&hitStream[0].ray)) % 16) {
throw std::logic_error("First element of ray stream is not 16-byte aligned.");
}
ipu_utils::logger()->info("Embree Rendering started.");
auto startTime = std::chrono::steady_clock::now();
embreeScene.intersect(hitStream, image.rows);
// For Embree we have to save hit records before shadow ray calcs
// (because we want to use the streaming version of occlusion test
// with the same ray stream for performance reasons):
#pragma omp parallel for schedule(auto)
for (auto i = 0u; i < hitStream.size(); ++i) {
auto& rh = hitStream[i];
if (std::isfinite(rh.ray.tfar)) {
// Advance ray origin to hit point:
rh.ray.org_x += rh.ray.dir_x * rh.ray.tfar;
rh.ray.org_y += rh.ray.dir_y * rh.ray.tfar;
rh.ray.org_z += rh.ray.dir_z * rh.ray.tfar;
}
rayStream[i].h = convertHitRecord(rh);
}
// Setup a shadow test:
embree_utils::Vec3fa light(18, 257, -1060);
#pragma omp parallel for schedule(auto)
for (auto r = 0u; r < hitStream.size(); ++r) {
auto& rh = hitStream[r];
// Setup ray for an occlusion query (point ray at light):
float dx = light.x - rh.ray.org_x;
float dy = light.y - rh.ray.org_y;
float dz = light.z - rh.ray.org_z;
float d = std::sqrt(dx*dx + dy*dy + dz*dz);
float norm = 1.f / d;
rh.ray.dir_x = dx * norm;
rh.ray.dir_y = dy * norm;
rh.ray.dir_z = dz * norm;
rh.ray.tnear = 0.f;
rh.ray.tfar = d;
// Offset the shadow ray to avoid self intersections:
// const float absx = std::abs(rh.ray.org_x);
// const float absy = std::abs(rh.ray.org_y);
// const float absz = std::abs(rh.ray.org_z);
// const float maxc = std::max(std::max(absx, absy), absz);
// const float ndotd = (rh.ray.dir_x * rh.hit.Ng_x) + (rh.ray.dir_y * rh.hit.Ng_y) + ((rh.ray.dir_z * rh.hit.Ng_z));
// float m = (1.f + maxc) * rayEpsilon * std::copysign(1.f, ndotd);
// rh.ray.org_x += rh.hit.Ng_x * m;
// rh.ray.org_y += rh.hit.Ng_y * m;
// rh.ray.org_z += rh.hit.Ng_z * m;
// Above works on CPU/IPU but not for Embree so use a more basic offset:
rh.ray.org_x += rh.ray.dir_x * .005f;
rh.ray.org_y += rh.ray.dir_y * .005f;
rh.ray.org_z += rh.ray.dir_z * .005f;
}
embreeScene.occluded(hitStream, image.rows);
// Store shadowing/shading result:
#pragma omp parallel for schedule(auto)
for (auto i = 0u; i < hitStream.size(); ++i) {
auto& rh = hitStream[i];
if (rh.hit.primID == RTC_INVALID_GEOMETRY_ID) {
continue;
}
auto matRgb = data.materials[data.matIDs[rh.hit.geomID]].albedo;
auto color = matRgb * 0.05f; // ambient
if (rh.ray.tfar != -std::numeric_limits<float>::infinity()) {
// Not occluded:
float norm = 1.f / std::sqrt(
(rh.hit.Ng_x * rh.hit.Ng_x) +
(rh.hit.Ng_y * rh.hit.Ng_y) +
(rh.hit.Ng_z * rh.hit.Ng_z)
);
auto costh =
norm * (rh.hit.Ng_x * rh.ray.dir_x) +
norm * (rh.hit.Ng_y * rh.ray.dir_y) +
norm * (rh.hit.Ng_z * rh.ray.dir_z);
color += matRgb * costh;
}
rayStream[i].rgb = color;
}
auto endTime = std::chrono::steady_clock::now();
ipu_utils::logger()->info("Embree Rendering ended.");
auto secs = std::chrono::duration<double>(endTime - startTime).count();
auto rayRate = rayStream.size() / secs;
ipu_utils::logger()->info("Embree ray rate: {} rays/sec", rayRate);
return rayStream;
}
template <class T>
void pathTrace(const SceneRef& sceneRef,
SceneDescription& scene,
const CompactBvh& bvh,
embree_utils::TraceResult& result,
T& primLookupFunc) {
using namespace embree_utils;
auto& hit = result.h;
hit.throughput = Vec3fa(1.f, 1.f, 1.f);
Vec3fa color(0.f, 0.f, 0.f);
for (auto i = 0u; i < scene.pathTrace->maxPathLength; ++i) {
offsetRay(hit.r, hit.normal); // offset rays to avoid self intersection.
// Reset ray limits for next bounce:
hit.r.tMin = 0.f;
hit.r.tMax = std::numeric_limits<float>::infinity();
auto intersected = bvh.intersect(hit.r, primLookupFunc);
if (intersected) {
updateHit(intersected, hit);
const auto& material = sceneRef.materials[sceneRef.matIDs[hit.geomID]];
if (material.emissive) {
color += hit.throughput * material.emission;
}
if (material.type == Material::Type::Diffuse) {
// CPU Generator not thread safe:
float u1, u2;
#pragma omp critical(sample)
{
u1 = scene.pathTrace->sampler.uniform_0_1();
u2 = scene.pathTrace->sampler.uniform_0_1();
}
hit.r.direction = sampleDiffuse(hit.normal, u1, u2);
// Update throughput
//const float w = std::abs(wiWorld.dot(normal));
//const float pdf = cosineHemispherePdf(wiTangent);
// The terms w / (Pi * pdf) all cancel for diffuse throughput:
hit.throughput *= material.albedo; // * (w / (Pi * pdf)); // PDF terms cancel for cosine weighted samples
//throughput *= material.albedo * (wiTangent.z * 2.f); // Apply PDF for hemisphere samples (sampleDir is in tangent space so cos(theta) == z-coord).
} else if (material.type == Material::Type::Specular) {
hit.r.direction = reflect(hit.r.direction, hit.normal);
hit.throughput *= material.albedo;
} else if (material.type == Material::Type::Refractive) {
float u1;
#pragma omp critical(sample)
{ u1 = scene.pathTrace->sampler.uniform_0_1(); }
const auto [dir, refracted] = dielectric(hit.r, hit.normal, material.ior, u1);
hit.r.direction = dir;
if (refracted) { hit.throughput *= material.albedo; }
} else {
// Mark an error:
result.rgb *= std::numeric_limits<float>::quiet_NaN();
hit.flags |= HitRecord::ERROR;
}
} else {
hit.flags |= HitRecord::ESCAPED;
break;
}
// Random stopping:
if (i > scene.pathTrace->roulletteStartDepth) {
float u1;
#pragma omp critical(sample)
{
u1 = scene.pathTrace->sampler.uniform_0_1();
}
if (evaluateRoulette(u1, hit.throughput)) { break; }
}
}
result.rgb += color;
}
std::vector<embree_utils::TraceResult> renderCPU(
SceneRef& sceneRef, cv::Mat& image, SceneDescription& scene
) {
// Use the compiled variant of a mesh (to match IPU implementation
// as closely as possible). A compiled mesh's internal storage
// is setup to reference the correct parts of the unified arrays
// in the scene description:
std::vector<CompiledTriangleMesh> meshes;
meshes.reserve(sceneRef.meshInfo.size());
#pragma omp parallel for schedule(auto)
for (auto s = 0u; s < sceneRef.meshInfo.size(); ++s) {
const auto& info = sceneRef.meshInfo[s];
auto firstNormalIndex = 0u;
auto numNormals = 0u;
if (sceneRef.meshNormals.size()) {
// If scene has normals assume every mesh has normals:
firstNormalIndex = info.firstVertex;
numNormals = info.numVertices;
}
meshes.emplace_back(
embree_utils::Bounds3d(), // Don't actually need this bound box for rendering...
ArrayRef(&sceneRef.meshTris[info.firstIndex], info.numTriangles),
ArrayRef(&sceneRef.meshVerts[info.firstVertex], info.numVertices),
ArrayRef(&sceneRef.meshNormals[firstNormalIndex], numNormals)
);
}
std::vector<embree_utils::TraceResult> rayStream(sceneRef.window.w * sceneRef.window.h);
initPerspectiveRayStream(rayStream, image, sceneRef);
zeroRgb(rayStream);
// Make a CompactBvh object for our custom CPU ray-tracer.
// A CompactBvh wraps the scene ref BVH nodes:
CompactBvh bvh(sceneRef.bvhNodes, sceneRef.maxLeafDepth);
auto primLookup = [&](std::uint16_t geomID, std::uint32_t primID) {
const auto& geom = sceneRef.geometry[geomID];
return getPrimitive(geom, scene);
};
// Time just the intersections with the compact BVH:
auto startTime = std::chrono::steady_clock::now();
ipu_utils::logger()->info("CPU Rendering started.");
if (scene.pathTrace) {
for (auto s = 0u; s < scene.pathTrace->samplesPerPixel; ++s) {
// Regenerate new camera rays at each sample step:
initPerspectiveRayStream(rayStream, image, sceneRef, &scene.pathTrace->sampler);
#pragma omp parallel for schedule(auto)
for (auto itr = rayStream.begin(); itr != rayStream.end(); ++itr) {
pathTrace(sceneRef, scene, bvh, *itr, primLookup);
}
}
scaleRgb(rayStream, 1.f / scene.pathTrace->samplesPerPixel);
} else {
embree_utils::Vec3fa lightPos(18, 257, -1060); // hard coded light position for testing
#pragma omp parallel for schedule(auto)
for (auto itr = rayStream.begin(); itr != rayStream.end(); ++itr) {
traceShadowRay(
bvh,
sceneRef.matIDs, sceneRef.materials,
.05f, // ambient light factor
*itr, primLookup, lightPos);
}
}
ipu_utils::logger()->info("CPU Rendering finished.");
auto endTime = std::chrono::steady_clock::now();
auto secs = std::chrono::duration<double>(endTime - startTime).count();
auto castsPerRay = scene.pathTrace ? scene.pathTrace->samplesPerPixel * scene.pathTrace->maxPathLength : 1;
auto rateString = scene.pathTrace ? "paths" : "rays";
auto rate = rayStream.size() * castsPerRay / secs;
ipu_utils::logger()->info("CPU time: {}", secs);
ipu_utils::logger()->info("CPU {} per second: {} ", rateString, rate);
return rayStream;
}
std::vector<embree_utils::TraceResult> renderIPU(
SceneRef& sceneRef, cv::Mat& image,
const std::vector<Sphere>& spheres,
const std::vector<Disc>& discs,
const boost::program_options::variables_map& args)
{
std::vector<embree_utils::TraceResult> rayStream(sceneRef.window.w * sceneRef.window.h);
initPerspectiveRayStream(rayStream, image, sceneRef);
zeroRgb(rayStream);
// This will be called as partial results are received from the IPU:
IpuScene::RayCallbackFn rayCallback;
IpuScene::RayCallbackFn* rayCallbackPtr = nullptr; // nullptr builds a renderer with no callback
if (args["ipu-ray-callback"].as<bool>()) {
rayCallback = [](std::size_t idx, const std::vector<embree_utils::TraceResult>& batch) {
// here we just log but we could process the batch of results
// e.g. to asynchronously update a render preview image.
ipu_utils::logger()->debug("Application callback received batch {}", idx);
};
rayCallbackPtr = &rayCallback;
}
auto ipus = args["ipus"].as<std::uint32_t>();
auto rpw = args["rays-per-worker"].as<std::size_t>();
ipu_utils::logger()->debug("IPU samples: {} rays-per-worker: {}", sceneRef.samplesPerPixel, rpw);
IpuScene ipuScene(spheres, discs, sceneRef, rayStream, rpw, rayCallbackPtr);
ipuScene.setRuntimeConfig(
ipu_utils::RuntimeConfig {
ipus, // numIpus;
ipus, // numReplicas;
"ipu_ray_trace", // exeName;
false, // useIpuModel;
false, // saveExe;
false, // loadExe;
false, // compileOnly;
true // deferredAttach;
}
);
auto nifPath = args["nif-hdri"].as<std::string>();
if (!nifPath.empty()) {
ipuScene.loadNifModel(nifPath);
}
ipuScene.setHdriRotation(args.at("hdri-rotation").as<float>());
ipuScene.setAvailableMemoryProportion(args.at("available-memory-proportion").as<float>());
ipuScene.setMaxNifBatchSize(args.at("max-nif-batch-size").as<std::size_t>());
// Hard code a large timeout. There is a
// sync with the host ofter each ray batch but
// a single batch could take a long time when a
// large number of samples are used.
ipu_utils::GraphManager().run(ipuScene,
{{"target.hostSyncTimeout", "10000"}});
if (sceneRef.pathTrace) {
scaleRgb(rayStream, 1.f / sceneRef.samplesPerPixel);
}
auto secs = ipuScene.getTraceTimeSecs();
auto castsPerRay = sceneRef.pathTrace ? sceneRef.samplesPerPixel : 1;
auto rateString = sceneRef.pathTrace ? "paths" : "rays";
auto rate = rayStream.size() * castsPerRay / secs;
ipu_utils::logger()->info("IPU time: {}", secs);
ipu_utils::logger()->info("IPU {} per second: {} ", rateString, rate);
return rayStream;
}
void addOptions(boost::program_options::options_description& desc) {
namespace po = boost::program_options;
desc.add_options()
("help", "Show command help.")
("outprefix,o", po::value<std::string>()->default_value("out"), "Set the output filename prefix.")
("ipus", po::value<std::uint32_t>()->default_value(4), "Select number of IPUs (each IPU will be a replica).")
("rays-per-worker", po::value<std::size_t>()->default_value(1), "Set the number of rays processed by each thread in each iteration. Lower values relieve I/O tile memory pressure.")
("width,w", po::value<std::int32_t>()->default_value(768), "Set rendered image width.")
("height,h", po::value<std::int32_t>()->default_value(432), "Set rendered image height.")
("crop", po::value<std::string>()->default_value(""),
"String describing a window of the image to render. Format is wxh+c+r, "
"where wxh is the width by height of window and +c+r specifies the column and row offset of the window.")
("anti-alias", po::value<float>()->default_value(.25f), "Width of anti-aliasing noise distribution in pixels.")
("mesh-file", po::value<std::string>()->default_value(std::string()),
"Mesh file containing a scene to render. Format must be supported by libassimp "
"(That library does not handle all formats well even if they are 'supported': "
"consult the Blender export guide in the README. "
"If no mesh file is specified the scene defaults to an built-in Cornell box scene.")
("nif-hdri", po::value<std::string>()->default_value(""),
"Path to the 'assets.extra' directory of a saved keras NIF model.")
("hdri-rotation", po::value<float>()->default_value(0.f), "Azimuthal rotation for HDRI environment map (degrees).")
("load-normals", po::bool_switch()->default_value(false), "When loading a mesh file normals are ignored by default (to save on-chip memory). If you use this flag they will be loaded (and interpolated).")
("scene", po::value<std::string>()->default_value("box"), "Choose one of the built in scenes from [box-simple, box, spheres] (only valid when not specifying 'mesh-file').")
("visualise", po::value<std::string>()->default_value("rgb"), "Choose the render output values to test/visualise. One of [rgb, normal, hitpoint, tfar, color, id]")
("render-mode", po::value<std::string>()->default_value("path-trace"), "Choose type of render from [shadow-trace, path-trace]. To see result set visualise=rgb")
("max-path-length", po::value<std::uint32_t>()->default_value(10), "Max path length for path tracing.")
("roulette-start-depth", po::value<std::uint32_t>()->default_value(3), "Path length after which rays can be randomly terminated with prob. inversely proportional to their throughput.")
("samples", po::value<std::uint32_t>()->default_value(256), "Number of samples per pixel for path tracing.")
("seed", po::value<std::uint64_t>()->default_value(1442), "RNG seed.")
("available-memory-proportion", po::value<float>()->default_value(0.6),
"Proportion of on-chip memory that is allowed for matrix multiplies.")
("max-nif-batch-size", po::value<std::size_t>()->default_value(0),
"Maximum batch-size for the NIF neural network. If the required batch is larger than this "
"the batch will be serialised so that this value is not exceeded. 0 means \"auto\": i.e. batch "
"will be chosen so that it matches the size of a single ray-batch streamed from DRAM.")
("ipu-only", po::bool_switch()->default_value(false), "Only render on IPU (e.g. if you don't want to wait for slow CPU path tracing).")
("ipu-ray-callback", po::bool_switch()->default_value(false), "Retrieve partial results directly from the IPU during renderering via callback mechanism. "
"By default the results are read from DRAM on one go at the end of renderering.")
("log-level", po::value<std::string>()->default_value("info"),
"Set the log level to one of the following: 'trace', 'debug', 'info', 'warn', 'err', 'critical', 'off'.");
}
std::map<std::string, VisualiseMode> visStrMap = {
{"rgb", RGB},
{"normal", NORMAL},
{"hitpoint", HIT_POINT},
{"tfar", RAY_TFAR},
{"color", MAT_COLOR},
{"id", GEOM_AND_PRIM_ID}
};
std::map<std::string, RenderMode> renderStrMap = {
{"shadow-trace", SHADOW_TRACE},
{"path-trace", PATH_TRACE}
};
boost::program_options::variables_map parseOptions(int argc, char** argv, boost::program_options::options_description& desc) {
namespace po = boost::program_options;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
if (vm.count("help")) {
std::cout << desc << "\n";
throw std::runtime_error("Show help");
}
try {
const auto str = vm.at("visualise").as<std::string>();
const auto v = visStrMap.at(str);
} catch (const std::exception& e) {
throw po::validation_error(po::validation_error::invalid_option_value, "visualise");
}
try {
const auto str = vm.at("render-mode").as<std::string>();
const auto v = renderStrMap.at(str);
} catch (const std::exception& e) {
throw po::validation_error(po::validation_error::invalid_option_value, "render-mode");
}
if (vm.at("mesh-file").as<std::string>().empty() && vm.at("load-normals").as<bool>()) {
throw std::runtime_error("Option 'load-normals' is not valid without the 'mesh-file' option");
}
po::notify(vm);
return vm;
}
int main(int argc, char** argv) {
boost::program_options::options_description desc;
addOptions(desc);
boost::program_options::variables_map args;
try {
args = parseOptions(argc, argv, desc);
setupLogging(args);
} catch (const std::exception& e) {
ipu_utils::logger()->info("Exiting after: {}.", e.what());
return EXIT_FAILURE;
}
// Log size info for various types, useful during memory optimisation:
ipu_utils::logger()->trace("HitRecord size: {}", sizeof(embree_utils::HitRecord));
ipu_utils::logger()->trace("HitRecord align: {}", alignof(embree_utils::HitRecord));
ipu_utils::logger()->trace("TraceResult size: {}", sizeof(embree_utils::TraceResult));
ipu_utils::logger()->trace("TraceResult align: {}", alignof(embree_utils::TraceResult));
ipu_utils::logger()->trace("CompactBVH2Node size: {}", sizeof(CompactBVH2Node));
ipu_utils::logger()->trace("CompactBVH2Node align: {}", alignof(CompactBVH2Node));
ipu_utils::logger()->trace("Ray size: {}", sizeof(embree_utils::Ray));
ipu_utils::logger()->trace("Ray align: {}", alignof(embree_utils::Ray));
ipu_utils::logger()->trace("RayShearParams size: {}", sizeof(RayShearParams));
ipu_utils::logger()->trace("RayShearParams align: {}", alignof(RayShearParams));
// ===== Scene setup: ======
// Load or build a scene:
auto scene = buildSceneDescription(args);
// Convert scene into efficient representations for rendering:
auto [customScene, embreeScene] = buildSceneData(scene);
// Get cropped window size:
const auto imageWidth = args["width"].as<std::int32_t>();
const auto imageHeight = args["height"].as<std::int32_t>();
auto crop = parseCropString(args["crop"].as<std::string>());
auto window = crop.value_or(CropWindow{imageWidth, imageHeight, 0, 0}); // (Set window to whole image if crop wasn't specified)
ipu_utils::logger()->info("Rendering window: width: {}, height: {}, start col: {}, start row: {}", window.w, window.h, window.c, window.r);
// The SceneRef wraps the dynamic arrays from the custom scene represenation in data structures that
// can be backed by either dynamic (for CPU) or static (for IPU) arrays. This allows the CPU code to
// be almost identical to IPU code which makes development and debugging quicker:
SceneRef sceneRef {
ArrayRef(customScene.geometry),
ArrayRef(customScene.meshInfo),
ArrayRef(customScene.meshTris),
ArrayRef(customScene.meshVerts),
ArrayRef(customScene.meshNormals),
ArrayRef(customScene.matIDs),
ArrayRef(customScene.materials),
ArrayRef(customScene.bvhNodes),
customScene.bvhMaxDepth,
(float)imageWidth,
(float)imageHeight,
scene.camera.horizontalFov,
args["anti-alias"].as<float>(),
args["max-path-length"].as<std::uint32_t>(),
args["roulette-start-depth"].as<std::uint32_t>(),
args["samples"].as<std::uint32_t>(),
args["seed"].as<std::uint64_t>(),
window,
scene.pathTrace != nullptr
};
// ===== Rendering: ======
const auto visModeStr = args.at("visualise").as<std::string>();
const auto visMode = visStrMap.at(visModeStr);
const std::string outPrefix = args.at("outprefix").as<std::string>() + "_" + visModeStr + "_";
cv::Mat embreeImage(imageHeight, imageWidth, CV_32FC3);
cv::Mat cpuImage(imageHeight, imageWidth, CV_32FC3);
const bool ipuOnly = args["ipu-only"].as<bool>();
if (!ipuOnly) {
// First create the same image using our custom built BVH and
// custom intersection routines:
auto rayStream = renderCPU(sceneRef, cpuImage, scene);
auto hitCount = visualiseHits(rayStream, sceneRef, cpuImage, visMode);
cv::imwrite(outPrefix + "cpu.exr", cpuImage);
ipu_utils::logger()->debug("CPU reference hit count: {}", hitCount);
// Now create reference image using Embree:
if (sceneRef.pathTrace) {
ipu_utils::logger()->warn("Embree path trace not yet implemented.");
} else {
rayStream = renderEmbree(sceneRef, embreeScene, embreeImage);
hitCount = visualiseHits(rayStream, sceneRef, embreeImage, visMode);
cv::imwrite(outPrefix + "embree.exr", embreeImage);
ipu_utils::logger()->debug("Embree hit count: {}", hitCount);
}
}
// Now render on IPU:
cv::Mat ipuImage(imageHeight, imageWidth, CV_32FC3);
auto rayStream = renderIPU(sceneRef, ipuImage, scene.spheres, scene.discs, args);
auto hitCount = visualiseHits(rayStream, sceneRef, ipuImage, visMode);
cv::imwrite(outPrefix + "ipu.exr", ipuImage);
ipu_utils::logger()->debug("IPU hit count: {}", hitCount);
// ===== Testing: ======
if (!ipuOnly) {
// Compare IPU and CPU outputs:
auto diff = ipuImage - cpuImage;
auto sq = diff.mul(diff);
auto mse = cv::mean(sq);
ipu_utils::logger()->info("MSE IPU vs CPU result: {}", mse);
// Note: Embree uses different algorithms internally so will never be an exact match:
diff = ipuImage - embreeImage;
sq = diff.mul(diff);
mse = cv::mean(sq);
ipu_utils::logger()->info("MSE IPU vs Embree result: {}", mse);
}
ipu_utils::logger()->info("Done.");
return EXIT_SUCCESS;
}