-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
2881 lines (2852 loc) · 467 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.3.361">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<meta name="author" content="Benjamin D. Best [email protected]">
<title>Downscaling AquaMaps</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="index_files/libs/clipboard/clipboard.min.js"></script>
<script src="index_files/libs/quarto-html/quarto.js"></script>
<script src="index_files/libs/quarto-html/popper.min.js"></script>
<script src="index_files/libs/quarto-html/tippy.umd.min.js"></script>
<script src="index_files/libs/quarto-html/anchor.min.js"></script>
<link href="index_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="index_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="index_files/libs/bootstrap/bootstrap.min.js"></script>
<link href="index_files/libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="index_files/libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script src="index_files/libs/htmlwidgets-1.6.2/htmlwidgets.js"></script>
<script src="index_files/libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<link href="index_files/libs/leaflet-1.3.1/leaflet.css" rel="stylesheet">
<script src="index_files/libs/leaflet-1.3.1/leaflet.js"></script>
<link href="index_files/libs/leafletfix-1.0.0/leafletfix.css" rel="stylesheet">
<script src="index_files/libs/proj4-2.6.2/proj4.min.js"></script>
<script src="index_files/libs/Proj4Leaflet-1.0.1/proj4leaflet.js"></script>
<link href="index_files/libs/rstudio_leaflet-1.3.1/rstudio_leaflet.css" rel="stylesheet">
<script src="index_files/libs/leaflet-binding-2.1.2.9000/leaflet.js"></script>
<script src="index_files/libs/leaflet-providers-1.9.0/leaflet-providers_1.9.0.js"></script>
<script src="index_files/libs/leaflet-providers-plugin-2.1.2.9000/leaflet-providers-plugin.js"></script>
<link href="index_files/libs/lfx-fullscreen-1.0.2/lfx-fullscreen-prod.css" rel="stylesheet">
<script src="index_files/libs/lfx-fullscreen-1.0.2/lfx-fullscreen-prod.js"></script>
</head>
<body>
<div id="quarto-content" class="page-columns page-rows-contents page-layout-article">
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
<li><a href="#overview" id="toc-overview" class="nav-link active" data-scroll-target="#overview"><span class="header-section-number">1</span> Overview</a></li>
<li><a href="#species-map-blue-whale" id="toc-species-map-blue-whale" class="nav-link" data-scroll-target="#species-map-blue-whale"><span class="header-section-number">2</span> Species map (blue whale)</a>
<ul class="collapse">
<li><a href="#zoom-to-socal" id="toc-zoom-to-socal" class="nav-link" data-scroll-target="#zoom-to-socal"><span class="header-section-number">2.1</span> Zoom to SoCal</a></li>
</ul></li>
<li><a href="#environmental-preferences" id="toc-environmental-preferences" class="nav-link" data-scroll-target="#environmental-preferences"><span class="header-section-number">3</span> Environmental preferences</a></li>
<li><a href="#depth-gebco-for-socal" id="toc-depth-gebco-for-socal" class="nav-link" data-scroll-target="#depth-gebco-for-socal"><span class="header-section-number">4</span> Depth (GEBCO) for SoCal</a></li>
<li><a href="#ramp-depth-with-species-preference" id="toc-ramp-depth-with-species-preference" class="nav-link" data-scroll-target="#ramp-depth-with-species-preference"><span class="header-section-number">5</span> Ramp depth with species preference</a>
<ul class="collapse">
<li><a href="#create-ramp_env-function" id="toc-create-ramp_env-function" class="nav-link" data-scroll-target="#create-ramp_env-function"><span class="header-section-number">5.1</span> Create <code>ramp_env()</code> function</a></li>
<li><a href="#apply-to-socal" id="toc-apply-to-socal" class="nav-link" data-scroll-target="#apply-to-socal"><span class="header-section-number">5.2</span> Apply to SoCal</a></li>
</ul></li>
<li><a href="#sdmpredictors" id="toc-sdmpredictors" class="nav-link" data-scroll-target="#sdmpredictors"><span class="header-section-number">6</span> <code>sdmpredictors</code></a></li>
<li><a href="#manual-upload-with-retry" id="toc-manual-upload-with-retry" class="nav-link" data-scroll-target="#manual-upload-with-retry"><span class="header-section-number">7</span> manual upload with retry</a></li>
<li><a href="#try-cog" id="toc-try-cog" class="nav-link" data-scroll-target="#try-cog"><span class="header-section-number">8</span> Try COG</a></li>
<li><a href="#next-steps" id="toc-next-steps" class="nav-link" data-scroll-target="#next-steps"><span class="header-section-number">9</span> Next Steps</a></li>
<li><a href="#links-from-gee" id="toc-links-from-gee" class="nav-link" data-scroll-target="#links-from-gee"><span class="header-section-number">10</span> Links from GEE</a></li>
<li><a href="#references" id="toc-references" class="nav-link" data-scroll-target="#references"><span class="header-section-number">11</span> References</a></li>
</ul>
<div class="quarto-alternate-formats"><h2>Other Formats</h2><ul><li><a href="index.docx"><i class="bi bi-file-word"></i>MS Word</a></li></ul></div></nav>
</div>
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
<div class="quarto-title-block"><div><h1 class="title">Downscaling AquaMaps</h1><button type="button" class="btn code-tools-button dropdown-toggle" id="quarto-code-tools-menu" data-bs-toggle="dropdown" aria-expanded="false"><i class="bi"></i> Code</button><ul class="dropdown-menu dropdown-menu-end" aria-labelelledby="quarto-code-tools-menu"><li><a id="quarto-show-all-code" class="dropdown-item" href="javascript:void(0)" role="button">Show All Code</a></li><li><a id="quarto-hide-all-code" class="dropdown-item" href="javascript:void(0)" role="button">Hide All Code</a></li><li><hr class="dropdown-divider"></li><li><a id="quarto-view-source" class="dropdown-item" href="javascript:void(0)" role="button">View Source</a></li></ul></div></div>
<p class="subtitle lead">v01: blue whale, GEBCO SoCal</p>
</div>
<div class="quarto-title-meta">
<div>
<div class="quarto-title-meta-heading">Author</div>
<div class="quarto-title-meta-contents">
<p>Benjamin D. Best <a href="mailto:[email protected]" class="email">[email protected]</a> </p>
</div>
</div>
<div>
<div class="quarto-title-meta-heading">Published</div>
<div class="quarto-title-meta-contents">
<p class="date">2023-08-14 15:59 (PDT)</p>
</div>
</div>
</div>
</header>
<section id="overview" class="level1" data-number="1">
<h1 data-number="1"><span class="header-section-number">1</span> Overview</h1>
<p><strong>Goal</strong>: Downscale <a href="https://aquamaps.org">AquaMaps.org</a> species distributions <span class="citation" data-cites="kaschnerAquaMapsPredictedRange2023 readyPredictingDistributionsMarine2010">(<a href="#ref-kaschnerAquaMapsPredictedRange2023" role="doc-biblioref">Kaschner et al. 2023</a>; <a href="#ref-readyPredictingDistributionsMarine2010" role="doc-biblioref">Ready et al. 2010</a>)</span> from 0.5 decimal degrees to 15 arc seconds (111.11 km to 0.46 km at the equator), using the R package <a href="https://raquamaps.github.io/aquamapsdata/index.html"><code>aquamapsdata</code></a> and the the General Bathymetric Chart of the Oceans <a href="https://www.gebco.net/">GEBCO</a>.</p>
<p>We start with the “Blue Whale” (<a href="https://aquamaps.org/preMap2.php?cache=1&SpecID=ITS-Mam-180528"><em>Balaenoptera musculus</em></a>) and Southern California.</p>
<p>Later we’ll iterate over species and expand to global, which will require large raster handling techniques using Cloud-Optimized GeoTIFFS (COGs; see <a href="https://www.cogeo.org">cogeo.org</a>).</p>
<p>All code and files (except the large global GEBCO grid) are found in this repository:</p>
<ul>
<li><a href="https://github.com/marinebon/aquamaps-downscaled">github.com/marinebon/aquamaps-downscaled</a></li>
</ul>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="co"># packages ----</span></span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="st">"librarian"</span> <span class="sc">%in%</span> <span class="fu">installed.packages</span>())</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">install.packages</span>(<span class="st">"librarian"</span>)</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="st">"rcrypt"</span> <span class="sc">%in%</span> <span class="fu">installed.packages</span>())</span>
<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> devtools<span class="sc">::</span><span class="fu">install_bitbucket</span>(<span class="st">"bklamer/rcrypt"</span>) <span class="co"># dependency for aquamapsdata</span></span>
<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a>librarian<span class="sc">::</span><span class="fu">shelf</span>(</span>
<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a> bklamer<span class="sc">/</span>rcrypt,</span>
<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a> raquamaps<span class="sc">/</span>aquamapsdata,</span>
<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a> dplyr, ggplot2, glue, here, knitr, leaflet, </span>
<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a> <span class="co"># </span><span class="al">TODO</span><span class="co">: migrate raster to terra</span></span>
<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a> <span class="co"># terra, </span></span>
<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> raster, rnaturalearth, sf, stringr, tidyr,</span>
<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a> <span class="at">quiet =</span> T)</span>
<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a>select <span class="ot">=</span> dplyr<span class="sc">::</span>select</span>
<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a><span class="co"># initial run-once step required to install remote db locally</span></span>
<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a><span class="co"># download_db(force = TRUE)</span></span>
<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="co"># aquamaps database ----</span></span>
<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>am_db <span class="ot"><-</span> <span class="fu">default_db</span>(<span class="st">"sqlite"</span>)</span>
<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a><span class="co"># paths ----</span></span>
<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a>dir_big <span class="ot"><-</span> <span class="st">"/Users/bbest/big"</span></span>
<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a>gebco_nc <span class="ot"><-</span> <span class="fu">glue</span>(<span class="st">"{dir_big}/gebco_2022_sub_ice_topo/GEBCO_2022_sub_ice_topo.nc"</span>)</span>
<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>gebco_socal_tif <span class="ot"><-</span> <span class="fu">here</span>(<span class="st">"data/gebco_socal.tif"</span>)</span>
<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a>land_socal_geo <span class="ot"><-</span> <span class="fu">here</span>(<span class="st">"data/land_socal.geojson"</span>)</span>
<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a>bo_tif <span class="ot"><-</span> <span class="fu">here</span>(<span class="st">"data/bio-oracle.tif"</span>)</span>
<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-29"><a href="#cb1-29" aria-hidden="true" tabindex="-1"></a><span class="co"># custom functions ----</span></span>
<span id="cb1-30"><a href="#cb1-30" aria-hidden="true" tabindex="-1"></a>add_ocean_basemap <span class="ot"><-</span> <span class="cf">function</span>(m){</span>
<span id="cb1-31"><a href="#cb1-31" aria-hidden="true" tabindex="-1"></a> <span class="co"># m: leaflet() map</span></span>
<span id="cb1-32"><a href="#cb1-32" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-33"><a href="#cb1-33" aria-hidden="true" tabindex="-1"></a> m <span class="sc">|></span></span>
<span id="cb1-34"><a href="#cb1-34" aria-hidden="true" tabindex="-1"></a> <span class="co"># add base: blue bathymetry and light brown/green topography</span></span>
<span id="cb1-35"><a href="#cb1-35" aria-hidden="true" tabindex="-1"></a> <span class="fu">addProviderTiles</span>(</span>
<span id="cb1-36"><a href="#cb1-36" aria-hidden="true" tabindex="-1"></a> <span class="st">"Esri.OceanBasemap"</span>,</span>
<span id="cb1-37"><a href="#cb1-37" aria-hidden="true" tabindex="-1"></a> <span class="at">options =</span> <span class="fu">providerTileOptions</span>(</span>
<span id="cb1-38"><a href="#cb1-38" aria-hidden="true" tabindex="-1"></a> <span class="at">variant =</span> <span class="st">"Ocean/World_Ocean_Base"</span>)) <span class="sc">|></span></span>
<span id="cb1-39"><a href="#cb1-39" aria-hidden="true" tabindex="-1"></a> <span class="co"># add reference: placename labels and borders</span></span>
<span id="cb1-40"><a href="#cb1-40" aria-hidden="true" tabindex="-1"></a> <span class="fu">addProviderTiles</span>(</span>
<span id="cb1-41"><a href="#cb1-41" aria-hidden="true" tabindex="-1"></a> <span class="st">"Esri.OceanBasemap"</span>,</span>
<span id="cb1-42"><a href="#cb1-42" aria-hidden="true" tabindex="-1"></a> <span class="at">options =</span> <span class="fu">providerTileOptions</span>(</span>
<span id="cb1-43"><a href="#cb1-43" aria-hidden="true" tabindex="-1"></a> <span class="at">variant =</span> <span class="st">"Ocean/World_Ocean_Reference"</span>))</span>
<span id="cb1-44"><a href="#cb1-44" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb1-45"><a href="#cb1-45" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb1-46"><a href="#cb1-46" aria-hidden="true" tabindex="-1"></a>add_am_raster <span class="ot"><-</span> <span class="cf">function</span>(</span>
<span id="cb1-47"><a href="#cb1-47" aria-hidden="true" tabindex="-1"></a> m, </span>
<span id="cb1-48"><a href="#cb1-48" aria-hidden="true" tabindex="-1"></a> r,</span>
<span id="cb1-49"><a href="#cb1-49" aria-hidden="true" tabindex="-1"></a> title,</span>
<span id="cb1-50"><a href="#cb1-50" aria-hidden="true" tabindex="-1"></a> <span class="at">cols =</span> <span class="fu">c</span>(<span class="st">"#FEB24C"</span>, <span class="st">"#FD8D3C"</span>, <span class="st">"#FC4E2A"</span>, <span class="st">"#E31A1C"</span>, <span class="st">"#B10026"</span>),</span>
<span id="cb1-51"><a href="#cb1-51" aria-hidden="true" tabindex="-1"></a> <span class="at">truncate_to_zero =</span> T){</span>
<span id="cb1-52"><a href="#cb1-52" aria-hidden="true" tabindex="-1"></a> <span class="co"># m: leaflet() map</span></span>
<span id="cb1-53"><a href="#cb1-53" aria-hidden="true" tabindex="-1"></a> <span class="co"># r: raster </span></span>
<span id="cb1-54"><a href="#cb1-54" aria-hidden="true" tabindex="-1"></a> <span class="co"># </span><span class="al">TODO</span><span class="co">: migrate to terra::rast()</span></span>
<span id="cb1-55"><a href="#cb1-55" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-56"><a href="#cb1-56" aria-hidden="true" tabindex="-1"></a> <span class="co"># r = r_gebco_bb</span></span>
<span id="cb1-57"><a href="#cb1-57" aria-hidden="true" tabindex="-1"></a> <span class="co"># title = "GEBCO depth (m)"</span></span>
<span id="cb1-58"><a href="#cb1-58" aria-hidden="true" tabindex="-1"></a> <span class="co"># cols = RColorBrewer::brewer.pal(7, "Blues")</span></span>
<span id="cb1-59"><a href="#cb1-59" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-60"><a href="#cb1-60" aria-hidden="true" tabindex="-1"></a> r <span class="ot"><-</span> leaflet<span class="sc">::</span><span class="fu">projectRasterForLeaflet</span>(r, <span class="at">method =</span> <span class="st">"bilinear"</span>)</span>
<span id="cb1-61"><a href="#cb1-61" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-62"><a href="#cb1-62" aria-hidden="true" tabindex="-1"></a> <span class="co"># truncate to 0 to prevent negative values </span></span>
<span id="cb1-63"><a href="#cb1-63" aria-hidden="true" tabindex="-1"></a> <span class="co"># that were generated by projecting the raster </span></span>
<span id="cb1-64"><a href="#cb1-64" aria-hidden="true" tabindex="-1"></a> <span class="co"># from geographic projection (decimal degrees) to Web Mercator (meters)</span></span>
<span id="cb1-65"><a href="#cb1-65" aria-hidden="true" tabindex="-1"></a> <span class="cf">if</span> (truncate_to_zero){</span>
<span id="cb1-66"><a href="#cb1-66" aria-hidden="true" tabindex="-1"></a> v <span class="ot"><-</span> <span class="fu">values</span>(r)</span>
<span id="cb1-67"><a href="#cb1-67" aria-hidden="true" tabindex="-1"></a> v[v<span class="sc"><</span><span class="dv">0</span>] <span class="ot"><-</span> <span class="dv">0</span></span>
<span id="cb1-68"><a href="#cb1-68" aria-hidden="true" tabindex="-1"></a> <span class="fu">values</span>(r) <span class="ot"><-</span> v</span>
<span id="cb1-69"><a href="#cb1-69" aria-hidden="true" tabindex="-1"></a> }</span>
<span id="cb1-70"><a href="#cb1-70" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-71"><a href="#cb1-71" aria-hidden="true" tabindex="-1"></a> pal <span class="ot"><-</span> leaflet<span class="sc">::</span><span class="fu">colorBin</span>(</span>
<span id="cb1-72"><a href="#cb1-72" aria-hidden="true" tabindex="-1"></a> cols, <span class="fu">na.omit</span>(<span class="fu">unique</span>(<span class="fu">values</span>(r))), </span>
<span id="cb1-73"><a href="#cb1-73" aria-hidden="true" tabindex="-1"></a> <span class="at">bins =</span> <span class="fu">length</span>(cols), <span class="at">pretty =</span> <span class="cn">TRUE</span>, <span class="at">na.color =</span> <span class="st">"#00000000"</span>)</span>
<span id="cb1-74"><a href="#cb1-74" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-75"><a href="#cb1-75" aria-hidden="true" tabindex="-1"></a> e <span class="ot"><-</span> raster<span class="sc">::</span><span class="fu">extent</span>(r) <span class="sc">|></span> </span>
<span id="cb1-76"><a href="#cb1-76" aria-hidden="true" tabindex="-1"></a> sf<span class="sc">::</span><span class="fu">st_bbox</span>() <span class="sc">|></span> </span>
<span id="cb1-77"><a href="#cb1-77" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_as_sfc</span>() <span class="sc">|></span> </span>
<span id="cb1-78"><a href="#cb1-78" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_as_sf</span>(<span class="at">crs=</span><span class="dv">3857</span>) <span class="sc">|></span> </span>
<span id="cb1-79"><a href="#cb1-79" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_transform</span>(<span class="dv">4326</span>) <span class="sc">|></span> </span>
<span id="cb1-80"><a href="#cb1-80" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_bbox</span>()</span>
<span id="cb1-81"><a href="#cb1-81" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb1-82"><a href="#cb1-82" aria-hidden="true" tabindex="-1"></a> m <span class="sc">|></span> </span>
<span id="cb1-83"><a href="#cb1-83" aria-hidden="true" tabindex="-1"></a> leaflet<span class="sc">::</span><span class="fu">addRasterImage</span>(</span>
<span id="cb1-84"><a href="#cb1-84" aria-hidden="true" tabindex="-1"></a> r, <span class="at">project =</span> F, <span class="at">colors =</span> pal, <span class="at">opacity =</span> <span class="fl">0.8</span>) <span class="sc">|></span> </span>
<span id="cb1-85"><a href="#cb1-85" aria-hidden="true" tabindex="-1"></a> <span class="fu">addLegend</span>(</span>
<span id="cb1-86"><a href="#cb1-86" aria-hidden="true" tabindex="-1"></a> <span class="at">values =</span> raster<span class="sc">::</span><span class="fu">values</span>(r), </span>
<span id="cb1-87"><a href="#cb1-87" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> title, <span class="at">pal =</span> pal) <span class="sc">|></span> </span>
<span id="cb1-88"><a href="#cb1-88" aria-hidden="true" tabindex="-1"></a> leaflet<span class="sc">::</span><span class="fu">fitBounds</span>(</span>
<span id="cb1-89"><a href="#cb1-89" aria-hidden="true" tabindex="-1"></a> <span class="at">lng1 =</span> e[[<span class="st">"xmin"</span>]], </span>
<span id="cb1-90"><a href="#cb1-90" aria-hidden="true" tabindex="-1"></a> <span class="at">lat1 =</span> e[[<span class="st">"ymin"</span>]], </span>
<span id="cb1-91"><a href="#cb1-91" aria-hidden="true" tabindex="-1"></a> <span class="at">lng2 =</span> e[[<span class="st">"xmax"</span>]], </span>
<span id="cb1-92"><a href="#cb1-92" aria-hidden="true" tabindex="-1"></a> <span class="at">lat2 =</span> e[[<span class="st">"ymax"</span>]])</span>
<span id="cb1-93"><a href="#cb1-93" aria-hidden="true" tabindex="-1"></a>}</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
</div>
</section>
<section id="species-map-blue-whale" class="level1" data-number="2">
<h1 data-number="2"><span class="header-section-number">2</span> Species map (blue whale)</h1>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="co"># fuzzy search allows full text search operators AND, OR, NOT and +</span></span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="co"># see https://www.sqlitetutorial.net/sqlite-full-text-search/</span></span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a>sp_term <span class="ot"><-</span> <span class="st">"blue whale"</span></span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a>key <span class="ot"><-</span> <span class="fu">am_search_fuzzy</span>(<span class="at">search_term =</span> sp_term) <span class="sc">|></span> </span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">pull</span>(key) <span class="co"># "ITS-Mam-180528"</span></span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a><span class="co"># get the identifier for the species</span></span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a>r <span class="ot"><-</span> <span class="fu">am_raster</span>(key)</span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a><span class="co"># show the native habitat map</span></span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>m <span class="ot"><-</span> <span class="fu">leaflet</span>() <span class="sc">|></span> </span>
<span id="cb2-12"><a href="#cb2-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_ocean_basemap</span>() <span class="sc">|></span> </span>
<span id="cb2-13"><a href="#cb2-13" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_am_raster</span>(r, <span class="at">title =</span> sp_term)</span>
<span id="cb2-14"><a href="#cb2-14" aria-hidden="true" tabindex="-1"></a>m </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="fig-blue_whale_map" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<div class="leaflet html-widget html-fill-item-overflow-hidden html-fill-item" id="htmlwidget-49904896084077541b6b" style="width:100%;height:464px;"></div>
<script type="application/json" data-for="htmlwidget-49904896084077541b6b">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Base"}]},{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Reference"}]},{"method":"addRasterImage","args":["",[[87.75,-179.75],[-78.24999999999999,179.75]],0.8,null,null,null]},{"method":"addLegend","args":[{"colors":["#FEB24C","#FD8D3C","#FC4E2A","#E31A1C","#B10026"],"labels":["0.0 – 0.2","0.2 – 0.4","0.4 – 0.6","0.6 – 0.8","0.8 – 1.0"],"na_color":null,"na_label":"NA","opacity":0.5,"position":"topright","type":"bin","title":"blue whale","extra":null,"layerId":null,"className":"info legend","group":null}]}],"limits":{"lat":[-78.24999999999999,87.75],"lng":[-179.75,179.75]},"fitBounds":[-78.24999999999999,-179.75,87.75,179.75,[]]},"evals":[],"jsHooks":[]}</script>
<figcaption class="figure-caption">Figure 1: Map of blue whale (<em>Balaenoptera musculus</em>) distribution from AquaMaps.</figcaption>
</figure>
</div>
</div>
<section id="zoom-to-socal" class="level2" data-number="2.1">
<h2 data-number="2.1" class="anchored" data-anchor-id="zoom-to-socal"><span class="header-section-number">2.1</span> Zoom to SoCal</h2>
<p>Notice the very large pixels, far bigger than useful for smaller planning purposes, such as for Sanctuaries or BOEM Wind Energy Areas.</p>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Southern California</span></span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a>bbox <span class="ot"><-</span> <span class="fu">c</span>(<span class="sc">-</span><span class="dv">121</span>, <span class="dv">32</span>, <span class="sc">-</span><span class="dv">117</span>, <span class="dv">35</span>)</span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>m <span class="sc">|></span></span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">fitBounds</span>(<span class="at">lng1 =</span> bbox[<span class="dv">1</span>], <span class="at">lat1 =</span> bbox[<span class="dv">2</span>], <span class="at">lng2 =</span> bbox[<span class="dv">3</span>], <span class="at">lat2 =</span> bbox[<span class="dv">4</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="fig-blue_whale_map_socal" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<div class="leaflet html-widget html-fill-item-overflow-hidden html-fill-item" id="htmlwidget-095514983b199c061bf5" style="width:100%;height:464px;"></div>
<script type="application/json" data-for="htmlwidget-095514983b199c061bf5">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Base"}]},{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Reference"}]},{"method":"addRasterImage","args":["",[[87.75,-179.75],[-78.24999999999999,179.75]],0.8,null,null,null]},{"method":"addLegend","args":[{"colors":["#FEB24C","#FD8D3C","#FC4E2A","#E31A1C","#B10026"],"labels":["0.0 – 0.2","0.2 – 0.4","0.4 – 0.6","0.6 – 0.8","0.8 – 1.0"],"na_color":null,"na_label":"NA","opacity":0.5,"position":"topright","type":"bin","title":"blue whale","extra":null,"layerId":null,"className":"info legend","group":null}]}],"limits":{"lat":[-78.24999999999999,87.75],"lng":[-179.75,179.75]},"fitBounds":[32,-121,35,-117,[]]},"evals":[],"jsHooks":[]}</script>
<figcaption class="figure-caption">Figure 2: Map of blue whale (<em>Balaenoptera musculus</em>) distribution from AquaMaps zoomed into Southern California. Notice the very large pixels, far bigger than useful for smaller planning purposes, such as for Sanctuaries or BOEM Wind Energy Areas.</figcaption>
</figure>
</div>
</div>
</section>
</section>
<section id="environmental-preferences" class="level1" data-number="3">
<h1 data-number="3"><span class="header-section-number">3</span> Environmental preferences</h1>
<p>Here are the environmental preferences for the species in the database.</p>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>sp_env <span class="ot"><-</span> <span class="fu">am_hspen</span>() <span class="sc">|></span> </span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(SpeciesID <span class="sc">==</span> key) <span class="sc">|></span> </span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">head</span>(<span class="dv">1</span>) <span class="sc">|></span> </span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">collect</span>()</span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>sp_env <span class="sc">|></span> </span>
<span id="cb4-7"><a href="#cb4-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), as.character)) <span class="sc">|></span> </span>
<span id="cb4-8"><a href="#cb4-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">pivot_longer</span>(<span class="fu">everything</span>()) <span class="sc">|></span> </span>
<span id="cb4-9"><a href="#cb4-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">kable</span>()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output-display">
<div id="tbl-blue_whale_env" class="anchored">
<table class="table table-sm table-striped small">
<caption>Table 1: Table of blue whale (<em>Balaenoptera musculus</em>) environmental suitability parameters from Aquamaps.</caption>
<colgroup>
<col style="width: 18%">
<col style="width: 81%">
</colgroup>
<thead>
<tr class="header">
<th style="text-align: left;">name</th>
<th style="text-align: left;">value</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">SpeciesID</td>
<td style="text-align: left;">ITS-Mam-180528</td>
</tr>
<tr class="even">
<td style="text-align: left;">Speccode</td>
<td style="text-align: left;">69007</td>
</tr>
<tr class="odd">
<td style="text-align: left;">LifeStage</td>
<td style="text-align: left;">adults</td>
</tr>
<tr class="even">
<td style="text-align: left;">FAOAreas</td>
<td style="text-align: left;">18, 21, 27, 31, 34, 41, 47, 48, 51, 57, 58, 61, 67, 71, 77, 81, 87, 88</td>
</tr>
<tr class="odd">
<td style="text-align: left;">FAOComplete</td>
<td style="text-align: left;">NA</td>
</tr>
<tr class="even">
<td style="text-align: left;">NMostLat</td>
<td style="text-align: left;">90</td>
</tr>
<tr class="odd">
<td style="text-align: left;">SMostLat</td>
<td style="text-align: left;">-90</td>
</tr>
<tr class="even">
<td style="text-align: left;">WMostLong</td>
<td style="text-align: left;">-180</td>
</tr>
<tr class="odd">
<td style="text-align: left;">EMostLong</td>
<td style="text-align: left;">180</td>
</tr>
<tr class="even">
<td style="text-align: left;">DepthYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">DepthMin</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">DepthPrefMin</td>
<td style="text-align: left;">1000</td>
</tr>
<tr class="odd">
<td style="text-align: left;">DepthPrefMax</td>
<td style="text-align: left;">4000</td>
</tr>
<tr class="even">
<td style="text-align: left;">DepthMax</td>
<td style="text-align: left;">8000</td>
</tr>
<tr class="odd">
<td style="text-align: left;">MeanDepth</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">Pelagic</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">TempYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">TempMin</td>
<td style="text-align: left;">-1.8</td>
</tr>
<tr class="odd">
<td style="text-align: left;">TempPrefMin</td>
<td style="text-align: left;">-1.3</td>
</tr>
<tr class="even">
<td style="text-align: left;">TempPrefMax</td>
<td style="text-align: left;">27.87</td>
</tr>
<tr class="odd">
<td style="text-align: left;">TempMax</td>
<td style="text-align: left;">32.07</td>
</tr>
<tr class="even">
<td style="text-align: left;">SalinityYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">SalinityMin</td>
<td style="text-align: left;">3.58</td>
</tr>
<tr class="even">
<td style="text-align: left;">SalinityPrefMin</td>
<td style="text-align: left;">32.57</td>
</tr>
<tr class="odd">
<td style="text-align: left;">SalinityPrefMax</td>
<td style="text-align: left;">35.49</td>
</tr>
<tr class="even">
<td style="text-align: left;">SalinityMax</td>
<td style="text-align: left;">38.84</td>
</tr>
<tr class="odd">
<td style="text-align: left;">PrimProdYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">PrimProdMin</td>
<td style="text-align: left;">0.1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">PrimProdPrefMin</td>
<td style="text-align: left;">1.4</td>
</tr>
<tr class="even">
<td style="text-align: left;">PrimProdPrefMax</td>
<td style="text-align: left;">16.07</td>
</tr>
<tr class="odd">
<td style="text-align: left;">PrimProdMax</td>
<td style="text-align: left;">119.58</td>
</tr>
<tr class="even">
<td style="text-align: left;">IceConYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">IceConMin</td>
<td style="text-align: left;">-0.88</td>
</tr>
<tr class="even">
<td style="text-align: left;">IceConPrefMin</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">IceConPrefMax</td>
<td style="text-align: left;">0.49</td>
</tr>
<tr class="even">
<td style="text-align: left;">IceConMax</td>
<td style="text-align: left;">0.96</td>
</tr>
<tr class="odd">
<td style="text-align: left;">OxyYN</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">OxyMin</td>
<td style="text-align: left;">1.1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">OxyPrefMin</td>
<td style="text-align: left;">116.82</td>
</tr>
<tr class="even">
<td style="text-align: left;">OxyPrefMax</td>
<td style="text-align: left;">275.01</td>
</tr>
<tr class="odd">
<td style="text-align: left;">OxyMax</td>
<td style="text-align: left;">408.48</td>
</tr>
<tr class="even">
<td style="text-align: left;">LandDistYN</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">LandDistMin</td>
<td style="text-align: left;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">LandDistPrefMin</td>
<td style="text-align: left;">17</td>
</tr>
<tr class="odd">
<td style="text-align: left;">LandDistPrefMax</td>
<td style="text-align: left;">733</td>
</tr>
<tr class="even">
<td style="text-align: left;">LandDistMax</td>
<td style="text-align: left;">1740</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Remark</td>
<td style="text-align: left;">FAO areas,bounding box and/or pelagic flag based on last review.</td>
</tr>
<tr class="even">
<td style="text-align: left;">DateCreated</td>
<td style="text-align: left;">2019-08-07 00:00:00</td>
</tr>
<tr class="odd">
<td style="text-align: left;">DateModified</td>
<td style="text-align: left;">NA</td>
</tr>
<tr class="even">
<td style="text-align: left;">expert_id</td>
<td style="text-align: left;">NA</td>
</tr>
<tr class="odd">
<td style="text-align: left;">DateExpert</td>
<td style="text-align: left;">NA</td>
</tr>
<tr class="even">
<td style="text-align: left;">Layer</td>
<td style="text-align: left;">s</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Rank</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">MapOpt</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">ExtnRuleYN</td>
<td style="text-align: left;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">Reviewed</td>
<td style="text-align: left;">1</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<p>Now let’s convert all variables having <code>{Var}YN == 1</code> into the relative environmental suitability rhomboids <span class="citation" data-cites="kaschnerMappingWorldwideDistributions2006">(<a href="#ref-kaschnerMappingWorldwideDistributions2006" role="doc-biblioref">Kaschner et al. 2006</a>)</span>.</p>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>var <span class="ot"><-</span> <span class="st">"Depth"</span></span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a>d_probs <span class="ot"><-</span> <span class="fu">tribble</span>(</span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a> <span class="sc">~</span>prob_name, <span class="sc">~</span>prob_value,</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a> <span class="st">"Min"</span> , <span class="dv">0</span>,</span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a> <span class="st">"PrefMin"</span> , <span class="dv">1</span>,</span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a> <span class="st">"PrefMax"</span> , <span class="dv">1</span>,</span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a> <span class="st">"Max"</span> , <span class="dv">0</span>)</span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>vars_yes <span class="ot"><-</span> sp_env <span class="sc">|></span> </span>
<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(<span class="fu">ends_with</span>(<span class="st">"YN"</span>)) <span class="sc">|></span> </span>
<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">pivot_longer</span>(</span>
<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a> <span class="fu">everything</span>()) <span class="sc">|></span> </span>
<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(value <span class="sc">==</span> <span class="dv">1</span>) <span class="sc">|></span> </span>
<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">pull</span>(name) <span class="sc">|></span> </span>
<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">str_replace</span>(<span class="st">"YN"</span>,<span class="st">""</span>)</span>
<span id="cb5-17"><a href="#cb5-17" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-18"><a href="#cb5-18" aria-hidden="true" tabindex="-1"></a>d <span class="ot"><-</span> sp_env <span class="sc">|></span> </span>
<span id="cb5-19"><a href="#cb5-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(<span class="fu">starts_with</span>(vars_yes)) <span class="sc">|></span></span>
<span id="cb5-20"><a href="#cb5-20" aria-hidden="true" tabindex="-1"></a> <span class="fu">select</span>(<span class="sc">!</span><span class="fu">ends_with</span>(<span class="st">"YN"</span>)) <span class="sc">|></span> </span>
<span id="cb5-21"><a href="#cb5-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">pivot_longer</span>(</span>
<span id="cb5-22"><a href="#cb5-22" aria-hidden="true" tabindex="-1"></a> <span class="fu">everything</span>(),</span>
<span id="cb5-23"><a href="#cb5-23" aria-hidden="true" tabindex="-1"></a> <span class="at">values_to =</span> <span class="st">"var_value"</span>) <span class="sc">|></span> </span>
<span id="cb5-24"><a href="#cb5-24" aria-hidden="true" tabindex="-1"></a> <span class="fu">separate_wider_regex</span>(</span>
<span id="cb5-25"><a href="#cb5-25" aria-hidden="true" tabindex="-1"></a> name,</span>
<span id="cb5-26"><a href="#cb5-26" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="at">var =</span> <span class="fu">paste</span>(vars_yes, <span class="at">collapse =</span> <span class="st">"|"</span>), <span class="co"># "",</span></span>
<span id="cb5-27"><a href="#cb5-27" aria-hidden="true" tabindex="-1"></a> <span class="at">prob_name =</span> <span class="fu">paste</span>(d_probs<span class="sc">$</span>prob_name, <span class="at">collapse =</span> <span class="st">"|"</span>))) <span class="sc">|></span> </span>
<span id="cb5-28"><a href="#cb5-28" aria-hidden="true" tabindex="-1"></a> <span class="fu">left_join</span>(</span>
<span id="cb5-29"><a href="#cb5-29" aria-hidden="true" tabindex="-1"></a> d_probs,</span>
<span id="cb5-30"><a href="#cb5-30" aria-hidden="true" tabindex="-1"></a> <span class="at">by =</span> <span class="st">"prob_name"</span>)</span>
<span id="cb5-31"><a href="#cb5-31" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-32"><a href="#cb5-32" aria-hidden="true" tabindex="-1"></a><span class="fu">kable</span>(d)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output-display">
<div id="tbl-blue_whale_env_yes" class="anchored">
<table class="table table-sm table-striped small">
<caption>Table 2: Table environmental suitability parameters from Aquamaps that are applicable to blue whale (<em>Balaenoptera musculus</em>), i.e. <code>{Var}YN == 1</code> in <a href="#tbl-blue_whale_env">Table 1</a>.</caption>
<thead>
<tr class="header">
<th style="text-align: left;">var</th>
<th style="text-align: left;">prob_name</th>
<th style="text-align: right;">var_value</th>
<th style="text-align: right;">prob_value</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">Depth</td>
<td style="text-align: left;">Min</td>
<td style="text-align: right;">0.00</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">Depth</td>
<td style="text-align: left;">PrefMin</td>
<td style="text-align: right;">1000.00</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Depth</td>
<td style="text-align: left;">PrefMax</td>
<td style="text-align: right;">4000.00</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">Depth</td>
<td style="text-align: left;">Max</td>
<td style="text-align: right;">8000.00</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Temp</td>
<td style="text-align: left;">Min</td>
<td style="text-align: right;">-1.80</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">Temp</td>
<td style="text-align: left;">PrefMin</td>
<td style="text-align: right;">-1.30</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Temp</td>
<td style="text-align: left;">PrefMax</td>
<td style="text-align: right;">27.87</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">Temp</td>
<td style="text-align: left;">Max</td>
<td style="text-align: right;">32.07</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Salinity</td>
<td style="text-align: left;">Min</td>
<td style="text-align: right;">3.58</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">Salinity</td>
<td style="text-align: left;">PrefMin</td>
<td style="text-align: right;">32.57</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Salinity</td>
<td style="text-align: left;">PrefMax</td>
<td style="text-align: right;">35.49</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">Salinity</td>
<td style="text-align: left;">Max</td>
<td style="text-align: right;">38.84</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">PrimProd</td>
<td style="text-align: left;">Min</td>
<td style="text-align: right;">0.10</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">PrimProd</td>
<td style="text-align: left;">PrefMin</td>
<td style="text-align: right;">1.40</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">PrimProd</td>
<td style="text-align: left;">PrefMax</td>
<td style="text-align: right;">16.07</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">PrimProd</td>
<td style="text-align: left;">Max</td>
<td style="text-align: right;">119.58</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="odd">
<td style="text-align: left;">IceCon</td>
<td style="text-align: left;">Min</td>
<td style="text-align: right;">-0.88</td>
<td style="text-align: right;">0</td>
</tr>
<tr class="even">
<td style="text-align: left;">IceCon</td>
<td style="text-align: left;">PrefMin</td>
<td style="text-align: right;">0.00</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="odd">
<td style="text-align: left;">IceCon</td>
<td style="text-align: left;">PrefMax</td>
<td style="text-align: right;">0.49</td>
<td style="text-align: right;">1</td>
</tr>
<tr class="even">
<td style="text-align: left;">IceCon</td>
<td style="text-align: left;">Max</td>
<td style="text-align: right;">0.96</td>
<td style="text-align: right;">0</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a>g <span class="ot"><-</span> <span class="fu">ggplot</span>(d, <span class="fu">aes</span>(var_value, prob_value)) <span class="sc">+</span></span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_area</span>() <span class="sc">+</span></span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme_light</span>() <span class="sc">+</span></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">facet_wrap</span>(</span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">vars</span>(var), </span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a> <span class="at">scales =</span> <span class="st">"free"</span>) <span class="sc">+</span></span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">labs</span>(</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> sp_term,</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a> <span class="at">subtitle =</span> <span class="st">"environmental envelope"</span>,</span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> <span class="cn">NULL</span>,</span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a> <span class="at">y =</span> <span class="st">"probability of presence"</span>)</span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>g</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output-display">
<div id="fig-blue_whale_env_yes" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="index_files/figure-html/fig-blue_whale_env_yes-1.png" class="img-fluid figure-img" width="672"></p>
<figcaption class="figure-caption">Figure 3: Plots of environmental suitability parameters from Aquamaps that are applicable to blue whale (<em>Balaenoptera musculus</em>) from <a href="#tbl-blue_whale_env_yes">Table 2</a>.</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="depth-gebco-for-socal" class="level1" data-number="4">
<h1 data-number="4"><span class="header-section-number">4</span> Depth (GEBCO) for SoCal</h1>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="co"># limit to bounding box for now</span></span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>ply_bb <span class="ot"><-</span> <span class="fu">extent</span>(</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(bbox[<span class="dv">1</span>], bbox[<span class="dv">3</span>], bbox[<span class="dv">2</span>], bbox[<span class="dv">4</span>])) <span class="sc">|></span> </span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_bbox</span>() <span class="sc">|></span> </span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_as_sfc</span>() <span class="sc">|></span> </span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_as_sf</span>(<span class="at">crs =</span> <span class="dv">4326</span>)</span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co"># land</span></span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">file.exists</span>(land_socal_geo)){</span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a> ply_land <span class="ot"><-</span> <span class="fu">ne_download</span>(</span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a> <span class="at">scale =</span> <span class="dv">10</span>, <span class="co"># 110/50/10: high spatial resolution (10 m)</span></span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a> <span class="at">type =</span> <span class="st">"land"</span>, </span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a> <span class="at">category =</span> <span class="st">"physical"</span>,</span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a> <span class="at">returnclass =</span> <span class="st">"sf"</span>)</span>
<span id="cb7-15"><a href="#cb7-15" aria-hidden="true" tabindex="-1"></a> <span class="co"># plot(ply_land)</span></span>
<span id="cb7-16"><a href="#cb7-16" aria-hidden="true" tabindex="-1"></a> ply_land_bb <span class="ot"><-</span> ply_land <span class="sc">|></span> </span>
<span id="cb7-17"><a href="#cb7-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">st_intersection</span>(ply_bb)</span>
<span id="cb7-18"><a href="#cb7-18" aria-hidden="true" tabindex="-1"></a> <span class="co"># plot(ply_land_bb)</span></span>
<span id="cb7-19"><a href="#cb7-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">write_sf</span>(ply_land_bb, land_socal_geo)</span>
<span id="cb7-20"><a href="#cb7-20" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb7-21"><a href="#cb7-21" aria-hidden="true" tabindex="-1"></a>ply_land_bb <span class="ot"><-</span> <span class="fu">read_sf</span>(land_socal_geo)</span>
<span id="cb7-22"><a href="#cb7-22" aria-hidden="true" tabindex="-1"></a><span class="co"># plot(ply_land_bb)</span></span>
<span id="cb7-23"><a href="#cb7-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-24"><a href="#cb7-24" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="sc">!</span><span class="fu">file.exists</span>(gebco_socal_tif)){</span>
<span id="cb7-25"><a href="#cb7-25" aria-hidden="true" tabindex="-1"></a> <span class="co"># read large GEBCO netcdf file outside repo</span></span>
<span id="cb7-26"><a href="#cb7-26" aria-hidden="true" tabindex="-1"></a> r_gebco <span class="ot"><-</span> <span class="fu">raster</span>(gebco_nc)</span>
<span id="cb7-27"><a href="#cb7-27" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb7-28"><a href="#cb7-28" aria-hidden="true" tabindex="-1"></a> <span class="co"># crop to SoCal bounding box</span></span>
<span id="cb7-29"><a href="#cb7-29" aria-hidden="true" tabindex="-1"></a> r_gebco_bb <span class="ot"><-</span> r_gebco <span class="sc">|></span> </span>
<span id="cb7-30"><a href="#cb7-30" aria-hidden="true" tabindex="-1"></a> <span class="fu">crop</span>(ply_bb)</span>
<span id="cb7-31"><a href="#cb7-31" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb7-32"><a href="#cb7-32" aria-hidden="true" tabindex="-1"></a> <span class="co"># mask out land, ie > 0 </span></span>
<span id="cb7-33"><a href="#cb7-33" aria-hidden="true" tabindex="-1"></a> r_gebco_bb <span class="ot"><-</span> r_gebco_bb <span class="sc">|></span> </span>
<span id="cb7-34"><a href="#cb7-34" aria-hidden="true" tabindex="-1"></a> <span class="fu">mask</span>(r_gebco_bb <span class="sc"><=</span> <span class="dv">0</span>, <span class="at">maskvalue =</span> <span class="dv">0</span>) <span class="sc">*</span> <span class="sc">-</span><span class="dv">1</span></span>
<span id="cb7-35"><a href="#cb7-35" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb7-36"><a href="#cb7-36" aria-hidden="true" tabindex="-1"></a> <span class="co"># write to TIF</span></span>
<span id="cb7-37"><a href="#cb7-37" aria-hidden="true" tabindex="-1"></a> <span class="fu">writeRaster</span>(r_gebco_bb, gebco_socal_tif, <span class="at">overwrite =</span> T)</span>
<span id="cb7-38"><a href="#cb7-38" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb7-39"><a href="#cb7-39" aria-hidden="true" tabindex="-1"></a>r_gebco_bb <span class="ot"><-</span> <span class="fu">raster</span>(gebco_socal_tif)</span>
<span id="cb7-40"><a href="#cb7-40" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-41"><a href="#cb7-41" aria-hidden="true" tabindex="-1"></a>m <span class="ot"><-</span> <span class="fu">leaflet</span>() <span class="sc">|></span> </span>
<span id="cb7-42"><a href="#cb7-42" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_ocean_basemap</span>() <span class="sc">|></span> </span>
<span id="cb7-43"><a href="#cb7-43" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_am_raster</span>(</span>
<span id="cb7-44"><a href="#cb7-44" aria-hidden="true" tabindex="-1"></a> <span class="at">r =</span> r_gebco_bb, </span>
<span id="cb7-45"><a href="#cb7-45" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="st">"GEBCO depth (m)"</span>, </span>
<span id="cb7-46"><a href="#cb7-46" aria-hidden="true" tabindex="-1"></a> <span class="at">cols =</span> RColorBrewer<span class="sc">::</span><span class="fu">brewer.pal</span>(<span class="dv">7</span>, <span class="st">"Blues"</span>))</span>
<span id="cb7-47"><a href="#cb7-47" aria-hidden="true" tabindex="-1"></a>m </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="fig-depth_socal" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<div class="leaflet html-widget html-fill-item-overflow-hidden html-fill-item" id="htmlwidget-d3d74f46696fd7cc78bb" style="width:100%;height:464px;"></div>
<script type="application/json" data-for="htmlwidget-d3d74f46696fd7cc78bb">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Base"}]},{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Reference"}]},{"method":"addRasterImage","args":["",[[34.99999999999999,-121],[31.99999999999998,-117]],0.8,null,null,null]},{"method":"addLegend","args":[{"colors":["#EFF3FF","#BED8EC","#8BBFDD","#549DCC","#2977B8","#084594"],"labels":["0 – 1,000","1,000 – 2,000","2,000 – 3,000","3,000 – 4,000","4,000 – 5,000","5,000 – 6,000"],"na_color":null,"na_label":"NA","opacity":0.5,"position":"topright","type":"bin","title":"GEBCO depth (m)","extra":null,"layerId":null,"className":"info legend","group":null}]}],"limits":{"lat":[31.99999999999998,34.99999999999999],"lng":[-121,-117]},"fitBounds":[31.99999999999998,-121,34.99999999999999,-117,[]]},"evals":[],"jsHooks":[]}</script>
<figcaption class="figure-caption">Figure 4: Map of depth from GEBCO zoomed into Southern California. Notice the much higher resolution compared to <a href="#fig-blue_whale_map_socal">Figure 2</a>.</figcaption>
</figure>
</div>
</div>
</section>
<section id="ramp-depth-with-species-preference" class="level1" data-number="5">
<h1 data-number="5"><span class="header-section-number">5</span> Ramp depth with species preference</h1>
<section id="create-ramp_env-function" class="level2" data-number="5.1">
<h2 data-number="5.1" class="anchored" data-anchor-id="create-ramp_env-function"><span class="header-section-number">5.1</span> Create <code>ramp_env()</code> function</h2>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>ramp_env <span class="ot"><-</span> <span class="cf">function</span>(v, min, min_pref, max, max_pref){</span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a> x <span class="ot"><-</span> <span class="fu">c</span>(min, min_pref, max, max_pref)</span>
<span id="cb8-4"><a href="#cb8-4" aria-hidden="true" tabindex="-1"></a> y <span class="ot"><-</span> <span class="fu">c</span>( <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
<span id="cb8-5"><a href="#cb8-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-6"><a href="#cb8-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">approx</span>(</span>
<span id="cb8-7"><a href="#cb8-7" aria-hidden="true" tabindex="-1"></a> x, y, </span>
<span id="cb8-8"><a href="#cb8-8" aria-hidden="true" tabindex="-1"></a> <span class="at">xout =</span> v, </span>
<span id="cb8-9"><a href="#cb8-9" aria-hidden="true" tabindex="-1"></a> <span class="at">yleft =</span> <span class="dv">0</span>,</span>
<span id="cb8-10"><a href="#cb8-10" aria-hidden="true" tabindex="-1"></a> <span class="at">yright =</span> <span class="dv">0</span>,</span>
<span id="cb8-11"><a href="#cb8-11" aria-hidden="true" tabindex="-1"></a> <span class="at">rule =</span> <span class="dv">2</span>,</span>
<span id="cb8-12"><a href="#cb8-12" aria-hidden="true" tabindex="-1"></a> <span class="at">method =</span> <span class="st">"linear"</span>)<span class="sc">$</span>y</span>
<span id="cb8-13"><a href="#cb8-13" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb8-14"><a href="#cb8-14" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-15"><a href="#cb8-15" aria-hidden="true" tabindex="-1"></a>p <span class="ot"><-</span> d <span class="sc">|></span> </span>
<span id="cb8-16"><a href="#cb8-16" aria-hidden="true" tabindex="-1"></a> <span class="fu">filter</span>(var <span class="sc">==</span> <span class="sc">!!</span>var)</span>
<span id="cb8-17"><a href="#cb8-17" aria-hidden="true" tabindex="-1"></a>p <span class="ot"><-</span> <span class="fu">setNames</span>(p<span class="sc">$</span>var_value, p<span class="sc">$</span>prob_name) <span class="sc">|></span> <span class="fu">as.list</span>()</span>
<span id="cb8-18"><a href="#cb8-18" aria-hidden="true" tabindex="-1"></a><span class="co"># p</span></span>
<span id="cb8-19"><a href="#cb8-19" aria-hidden="true" tabindex="-1"></a><span class="co"># Min PrefMin PrefMax Max </span></span>
<span id="cb8-20"><a href="#cb8-20" aria-hidden="true" tabindex="-1"></a><span class="co"># 0 1000 4000 8000</span></span>
<span id="cb8-21"><a href="#cb8-21" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-22"><a href="#cb8-22" aria-hidden="true" tabindex="-1"></a>x_pref <span class="ot"><-</span> <span class="fu">c</span>(p<span class="sc">$</span>Min, p<span class="sc">$</span>PrefMin, p<span class="sc">$</span>PrefMax, p<span class="sc">$</span>Max)</span>
<span id="cb8-23"><a href="#cb8-23" aria-hidden="true" tabindex="-1"></a>y_pref <span class="ot"><-</span> <span class="fu">c</span>( <span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">1</span>, <span class="dv">0</span>)</span>
<span id="cb8-24"><a href="#cb8-24" aria-hidden="true" tabindex="-1"></a>x_new <span class="ot"><-</span> <span class="fu">seq</span>(<span class="sc">-</span><span class="dv">200</span>, <span class="dv">10000</span>, <span class="at">by=</span><span class="dv">100</span>)</span>
<span id="cb8-25"><a href="#cb8-25" aria-hidden="true" tabindex="-1"></a>y_new <span class="ot"><-</span> <span class="fu">ramp_env</span>(x_new, p<span class="sc">$</span>Min, p<span class="sc">$</span>PrefMin, p<span class="sc">$</span>PrefMax, p<span class="sc">$</span>Max)</span>
<span id="cb8-26"><a href="#cb8-26" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb8-27"><a href="#cb8-27" aria-hidden="true" tabindex="-1"></a><span class="fu">plot</span>(</span>
<span id="cb8-28"><a href="#cb8-28" aria-hidden="true" tabindex="-1"></a> x_pref,</span>
<span id="cb8-29"><a href="#cb8-29" aria-hidden="true" tabindex="-1"></a> y_pref, </span>
<span id="cb8-30"><a href="#cb8-30" aria-hidden="true" tabindex="-1"></a> <span class="at">xlim =</span> <span class="fu">range</span>(<span class="fu">c</span>(x_pref, x_new), <span class="at">na.rm=</span>T), </span>
<span id="cb8-31"><a href="#cb8-31" aria-hidden="true" tabindex="-1"></a> <span class="at">ylim =</span> <span class="fu">range</span>(<span class="fu">c</span>(y_pref, y_new), <span class="at">na.rm=</span>T),</span>
<span id="cb8-32"><a href="#cb8-32" aria-hidden="true" tabindex="-1"></a> <span class="at">xlab =</span> var,</span>
<span id="cb8-33"><a href="#cb8-33" aria-hidden="true" tabindex="-1"></a> <span class="at">ylab =</span> sp_term)</span>
<span id="cb8-34"><a href="#cb8-34" aria-hidden="true" tabindex="-1"></a><span class="fu">points</span>(x_new, y_new, <span class="at">col =</span> <span class="dv">2</span>, <span class="at">pch =</span> <span class="st">"*"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output-display">
<div id="fig-ramp_env" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<p><img src="index_files/figure-html/fig-ramp_env-1.png" class="img-fluid figure-img" width="672"></p>
<figcaption class="figure-caption">Figure 5: Plot of original depth preferences for 4 points (black circles) and interpolated values (red asterisks) using new <code>ramp_env()</code> function.</figcaption>
</figure>
</div>
</div>
</div>
</section>
<section id="apply-to-socal" class="level2" data-number="5.2">
<h2 data-number="5.2" class="anchored" data-anchor-id="apply-to-socal"><span class="header-section-number">5.2</span> Apply to SoCal</h2>
<p>Apply the <code>ramp_env()</code> function to the SoCal depth using blue whale preferences.</p>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>r_sp_depth_bb <span class="ot"><-</span> terra<span class="sc">::</span><span class="fu">app</span>(</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> <span class="at">x =</span> terra<span class="sc">::</span><span class="fu">rast</span>(r_gebco_bb), </span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> <span class="at">fun =</span> ramp_env, </span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a> <span class="at">min =</span> p<span class="sc">$</span>Min, </span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a> <span class="at">min_pref =</span> p<span class="sc">$</span>PrefMin, </span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a> <span class="at">max_pref =</span> p<span class="sc">$</span>PrefMax,</span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a> <span class="at">max =</span> p<span class="sc">$</span>Max) <span class="sc">|></span> </span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">raster</span>()</span>
<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>m <span class="ot"><-</span> <span class="fu">leaflet</span>() <span class="sc">|></span> </span>
<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_ocean_basemap</span>() <span class="sc">|></span> </span>
<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">add_am_raster</span>(</span>
<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a> <span class="at">r =</span> r_sp_depth_bb, </span>
<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a> <span class="at">title =</span> <span class="fu">glue</span>(<span class="st">"{sp_term}, {var} only"</span>))</span>
<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>m </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div id="fig-map_sp_depth_bb" class="quarto-figure quarto-figure-center anchored">
<figure class="figure">
<div class="leaflet html-widget html-fill-item-overflow-hidden html-fill-item" id="htmlwidget-26586c51045fe997417e" style="width:100%;height:464px;"></div>
<script type="application/json" data-for="htmlwidget-26586c51045fe997417e">{"x":{"options":{"crs":{"crsClass":"L.CRS.EPSG3857","code":null,"proj4def":null,"projectedBounds":null,"options":{}}},"calls":[{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Base"}]},{"method":"addProviderTiles","args":["Esri.OceanBasemap",null,null,{"errorTileUrl":"","noWrap":false,"detectRetina":false,"variant":"Ocean/World_Ocean_Reference"}]},{"method":"addRasterImage","args":["",[[34.99999999999999,-121],[31.99999999999998,-117]],0.8,null,null,null]},{"method":"addLegend","args":[{"colors":["#FEB24C","#FD8D3C","#FC4E2A","#E31A1C","#B10026"],"labels":["0.0 – 0.2","0.2 – 0.4","0.4 – 0.6","0.6 – 0.8","0.8 – 1.0"],"na_color":null,"na_label":"NA","opacity":0.5,"position":"topright","type":"bin","title":"blue whale, Depth only","extra":null,"layerId":null,"className":"info legend","group":null}]}],"limits":{"lat":[31.99999999999998,34.99999999999999],"lng":[-121,-117]},"fitBounds":[31.99999999999998,-121,34.99999999999999,-117,[]]},"evals":[],"jsHooks":[]}</script>
<figcaption class="figure-caption">Figure 6: Map of depth preference for <code>r sp_term</code> applied to SoCal depth with the <code>ramp_env()</code> function.</figcaption>
</figure>
</div>
</div>
</section>
</section>
<section id="sdmpredictors" class="level1" data-number="6">
<h1 data-number="6"><span class="header-section-number">6</span> <code>sdmpredictors</code></h1>
<div class="cell">
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>librarian<span class="sc">::</span><span class="fu">shelf</span>(</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a> sdmpredictors, skimr)</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a><span class="co"># exploring the marine datasets </span></span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>datasets <span class="ot"><-</span> <span class="fu">list_datasets</span>(<span class="at">terrestrial =</span> <span class="cn">FALSE</span>, <span class="at">marine =</span> <span class="cn">TRUE</span>)</span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a><span class="fu">kable</span>(datasets)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</details>
<div class="cell-output-display">
<table class="table table-sm table-striped small">
<colgroup>
<col style="width: 0%">
<col style="width: 1%">
<col style="width: 1%">
<col style="width: 0%">
<col style="width: 2%">
<col style="width: 72%">
<col style="width: 21%">
</colgroup>
<thead>
<tr class="header">
<th style="text-align: left;"></th>
<th style="text-align: left;">dataset_code</th>
<th style="text-align: left;">terrestrial</th>
<th style="text-align: left;">marine</th>
<th style="text-align: left;">url</th>
<th style="text-align: left;">description</th>
<th style="text-align: left;">citation</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">2</td>
<td style="text-align: left;">Bio-ORACLE</td>
<td style="text-align: left;">FALSE</td>
<td style="text-align: left;">TRUE</td>
<td style="text-align: left;">https://bio-oracle.org/</td>
<td style="text-align: left;">Bio-ORACLE is a set of GIS rasters providing geophysical, biotic and environmental data for surface and benthic marine realms at a spatial resolution 5 arcmin (9.2 km) in the ESRI ascii and tif format.</td>
<td style="text-align: left;">Tyberghein L., Verbruggen H., Pauly K., Troupin C., Mineur F. & De Clerck O. Bio-ORACLE: a global environmental dataset for marine species distribution modeling. Global Ecology and Biogeography. doi: 10.1111/j.1466-8238.2011.00656.x</td>
</tr>
<tr class="even">
<td style="text-align: left;">3</td>
<td style="text-align: left;">MARSPEC</td>
<td style="text-align: left;">FALSE</td>
<td style="text-align: left;">TRUE</td>
<td style="text-align: left;">http://marspec.org/</td>
<td style="text-align: left;">MARSPEC is a set of high resolution climatic and geophysical GIS data layers for the world ocean. Seven geophysical variables were derived from the SRTM30_PLUS high resolution bathymetry dataset. These layers characterize the horizontal orientation (aspect), slope, and curvature of the seafloor and the distance from shore. Ten “bioclimatic” variables were derived from NOAA’s World Ocean Atlas and NASA’s MODIS satellite imagery and characterize the inter-annual means, extremes, and variances in sea surface temperature and salinity. These variables will be useful to those interested in the spatial ecology of marine shallow-water and surface-associated pelagic organisms across the globe. Note that, in contrary to the original MARSPEC, all layers have unscaled values.</td>
<td style="text-align: left;">Sbrocco, EJ and Barber, PH (2013) MARSPEC: Ocean climate layers for marine spatial ecology. Ecology 94: 979. doi: 10.1890/12-1358.1</td>
</tr>
</tbody>
</table>
</div>
<details>
<summary>Code</summary>
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="co"># exploring the marine layers </span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>layers <span class="ot"><-</span> <span class="fu">list_layers</span>(datasets)</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="co"># names(layers)</span></span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="co"># skim(layers)</span></span>
<span id="cb11-7"><a href="#cb11-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb11-8"><a href="#cb11-8" aria-hidden="true" tabindex="-1"></a><span class="co"># table(layers$dataset_code)</span></span>
<span id="cb11-9"><a href="#cb11-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Bio-ORACLE MARSPEC </span></span>
<span id="cb11-10"><a href="#cb11-10" aria-hidden="true" tabindex="-1"></a><span class="co"># 918 42 </span></span>