forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_dtype.py
535 lines (453 loc) · 26.6 KB
/
test_dtype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
import unittest
import numpy as np
import torch
import operator
from tinygrad.helpers import CI, getenv, DEBUG, OSX, temp
from tinygrad.dtype import DType, DTYPES_DICT, ImageDType, PtrDType, least_upper_float, least_upper_dtype
from tinygrad import Device
from tinygrad.tensor import Tensor, dtypes
from typing import Any, List
from hypothesis import given, settings, strategies as strat
settings.register_profile("my_profile", max_examples=200, deadline=None)
settings.load_profile("my_profile")
core_dtypes = list(DTYPES_DICT.values())
floats = [dt for dt in core_dtypes if dtypes.is_float(dt)]
def is_dtype_supported(dtype: DType, device: str = Device.DEFAULT):
if dtype == dtypes.bfloat16: return False # numpy doesn't support bf16, tested separately in TestBFloat16DType
if device in ["WEBGPU", "WEBGL"]: return dtype in [dtypes.float, dtypes.int32, dtypes.uint32]
# for CI GPU, cl_khr_fp16 isn't supported
# for CI LLVM, it segfaults because it can't link to the casting function
# CUDA in CI uses CUDACPU that does not support half
# PYTHON supports half memoryview in 3.12+ https://github.com/python/cpython/issues/90751
if dtype == dtypes.half: return not (CI and device in ["GPU", "LLVM", "CUDA"]) and device != "PYTHON"
if dtype == dtypes.float64: return device != "METAL" and not (OSX and device == "GPU")
return True
def get_available_cast_dtypes(dtype: DType) -> List[DType]:
if not is_dtype_supported(dtype): return []
return [v for k, v in DTYPES_DICT.items() if v != dtype and is_dtype_supported(v) and not k.startswith("_")] # dont cast internal dtypes
def _test_to_np(a:Tensor, np_dtype, target):
if DEBUG >= 2: print(a)
na = a.numpy()
if DEBUG >= 2: print(na, na.dtype, a.lazydata.base.realized)
try:
assert na.dtype == np_dtype
np.testing.assert_allclose(na, target)
except AssertionError as e:
raise AssertionError(f"\ntensor {a.numpy()} does not match target {target} with np_dtype {np_dtype}") from e
def _assert_eq(tensor:Tensor, target_dtype:DType, target):
if DEBUG >= 2: print(tensor.numpy())
try:
assert tensor.dtype == target_dtype
np.testing.assert_allclose(tensor.numpy(), target, rtol=1e-3 if target_dtype == dtypes.float16 else 1e-7)
except AssertionError as e:
raise AssertionError(f"\ntensor {tensor.numpy()} dtype {tensor.dtype} does not match target {target} with dtype {target_dtype}") from e
def _test_op(fxn, target_dtype:DType, target):
_assert_eq(fxn(), target_dtype, target)
def _test_cast(a:Tensor, target_dtype:DType):
_test_op(lambda: a.cast(target_dtype), target_dtype, list(a.numpy().astype(target_dtype.np)))
def _test_bitcast(a:Tensor, target_dtype:DType, target=None):
_test_op(lambda: a.bitcast(target_dtype), target_dtype, target or a.numpy().view(target_dtype.np).tolist())
class TestDType(unittest.TestCase):
DTYPE: Any = None
DATA: Any = None
@classmethod
def setUpClass(cls):
if not cls.DTYPE or not is_dtype_supported(cls.DTYPE): raise unittest.SkipTest("dtype not supported")
if dtypes.is_int(cls.DTYPE): cls.DATA = np.random.randint(0, 100, size=10, dtype=cls.DTYPE.np).tolist()
elif cls.DTYPE == dtypes.bool: cls.DATA = np.random.choice([True, False], size=10).tolist()
else: cls.DATA = np.random.uniform(0, 1, size=10).tolist()
def setUp(self):
if self.DTYPE is None: raise unittest.SkipTest("base class")
def test_to_np(self): _test_to_np(Tensor(self.DATA, dtype=self.DTYPE), self.DTYPE.np, np.array(self.DATA, dtype=self.DTYPE.np))
def test_casts_to(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=dtype), self.DTYPE),
get_available_cast_dtypes(self.DTYPE)
))
def test_casts_from(self): list(map(
lambda dtype: _test_cast(Tensor(self.DATA, dtype=self.DTYPE), dtype),
get_available_cast_dtypes(self.DTYPE)
))
def test_same_size_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype) if dtype.itemsize == self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=self.DTYPE, b_dtype=dtype) if dtype.itemsize > self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_upcast_to_ops(self):
list(map(
lambda dtype: _test_ops(a_dtype=dtype, b_dtype=self.DTYPE) if dtype.itemsize < self.DTYPE.itemsize else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_bitcast(self):
if Device.DEFAULT == "WEBGL": raise unittest.SkipTest("no bitcast in WebGL GLSL")
if self.DTYPE == dtypes.bool: raise unittest.SkipTest("no bools in bitcast")
list(map(
lambda dtype:
_test_bitcast(Tensor(self.DATA, dtype=self.DTYPE), dtype) if dtype.itemsize == self.DTYPE.itemsize and dtype != dtypes.bool else None,
get_available_cast_dtypes(self.DTYPE)
))
def test_dtypes_fields(self):
fields = dtypes.fields()
self.assertTrue(all(isinstance(value, DType) for value in fields.values()))
self.assertTrue(all(issubclass(value.np, np.generic) for value in fields.values() if value.np is not None))
def test_resulting_and_init_dtypes_match(self):
dtypes = list(map(np.dtype, ["bool", "uint8", "int8", "int16", "int32", "int64", "float32", "float64"]))
data = [1., 2., 0., 0.5, -1.5, 5.25]
for dt in dtypes:
arr = np.asarray(data, dtype=dt)
tin = Tensor(arr).numpy()
tor = torch.as_tensor(arr).detach().numpy()
assert dt is tin.dtype is tor.dtype, f"dtype mismatch: expected={dt} | tinygrad={tin.dtype} | torch={tor.dtype}"
np.testing.assert_allclose(tin, tor, atol=1e-6, rtol=1e-3)
def _test_ops(a_dtype:DType, b_dtype:DType, target_dtype=None):
target_dtype = target_dtype or least_upper_dtype(a_dtype, b_dtype)
if not is_dtype_supported(a_dtype) or not is_dtype_supported(b_dtype) or not is_dtype_supported(target_dtype): return
if a_dtype == dtypes.bool or b_dtype == dtypes.bool: return
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)+Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [2,4,6,8])
_assert_eq((Tensor([1], dtype=a_dtype).cast(b_dtype)+Tensor([1], dtype=a_dtype).cast(b_dtype)).cast(a_dtype), a_dtype, [2])
_assert_eq(Tensor([1,2,3,4], dtype=a_dtype)*Tensor([1,2,3,4], dtype=b_dtype), target_dtype, [1,4,9,16])
_assert_eq(Tensor([[1,2],[3,4]], dtype=a_dtype)@Tensor.eye(2, dtype=b_dtype), target_dtype, [[1,2],[3,4]])
_assert_eq(Tensor([1,1,1,1], dtype=a_dtype)+Tensor.ones((4,4), dtype=b_dtype), target_dtype, 2*Tensor.ones(4,4).numpy())
@unittest.skipUnless(Device.DEFAULT == "LLVM", "bfloat16 not supported")
class TestBFloat16DType(unittest.TestCase):
def test_bf16_to_float(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.bfloat16), dtypes.float32)
def test_float_to_bf16(self):
with self.assertRaises(AssertionError):
_test_cast(Tensor([100000], dtype=dtypes.float32), dtypes.bfloat16)
# torch.tensor([10000, -1, -1000, -10000, 20]).type(torch.bfloat16)
def test_bf16(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.bfloat16)
t.realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
def test_bf16_disk_write_read(self):
t = Tensor([10000, -1, -1000, -10000, 20]).cast(dtypes.float32)
t.to(f"disk:{temp('f32')}").realize()
# hack to "cast" f32 -> bf16
with open(temp('f32'), "rb") as f: dat = f.read()
adat = b''.join([dat[i+2:i+4] for i in range(0, len(dat), 4)])
with open(temp('bf16'), "wb") as f: f.write(adat)
t = Tensor.empty(5, dtype=dtypes.bfloat16, device=f"disk:{temp('bf16')}").llvm().realize()
back = t.cast(dtypes.float32)
assert tuple(back.numpy().tolist()) == (9984., -1, -1000, -9984, 20)
class TestHalfDtype(TestDType): DTYPE = dtypes.half
class TestFloatDType(TestDType):
DTYPE = dtypes.float
def test_float_to_uint(self):
_test_op(lambda: Tensor([-0.9, -0.3, 1.2], dtype=dtypes.float32).cast(dtypes.uint32), dtypes.uint32,
[0, 0, 1])
class TestDoubleDtype(TestDType):
DTYPE = dtypes.double
@unittest.skipIf(getenv("CUDACPU",0)==1, "conversion not supported on CUDACPU")
@unittest.skipIf(getenv("HIP",0)==1, "HIP renderer does not support f64 precision")
def test_float64_increased_precision(self):
for func in [
lambda t: t.exp(),
lambda t: t.exp2(),
lambda t: t.log(),
lambda t: t.log2(),
lambda t: t.sqrt(),
lambda t: t.rsqrt(),
lambda t: t.sin(),
lambda t: t.cos(),
lambda t: t.tan(),
lambda t: t.sigmoid(),
]:
a = [2, 3, 4]
np.testing.assert_allclose(func(Tensor(a, dtype=self.DTYPE)).numpy(), func(torch.tensor(a, dtype=torch.float64)), rtol=1e-12, atol=1e-12)
def test_float64_to_float32_cast_inf(self):
_test_op(lambda: Tensor([3.4e40, 3.4e38, 1, 0], dtype=dtypes.float64).cast(dtypes.float32),
dtypes.float32, [float('inf'), 3.4e38, 1, 0])
class TestInt8Dtype(TestDType):
DTYPE = dtypes.int8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_int8_to_uint8_negative(self):
_test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint8), dtypes.uint8, [255, 254, 253, 252])
def test_int8_to_uint16_negative(self):
_test_op(lambda: Tensor([-1, -2, -3, -4], dtype=dtypes.int8).cast(dtypes.uint16), dtypes.uint16, [2**16-1, 2**16-2, 2**16-3, 2**16-4])
class TestUint8Dtype(TestDType):
DTYPE = dtypes.uint8
@unittest.skipIf(getenv("CUDA",0)==1 or getenv("PTX", 0)==1, "cuda saturation works differently")
def test_uint8_to_int8_overflow(self):
_test_op(lambda: Tensor([255, 254, 253, 252], dtype=dtypes.uint8).cast(dtypes.int8), dtypes.int8, [-1, -2, -3, -4])
@unittest.skipIf(Device.DEFAULT == "WEBGL", "No bitcast on WebGL")
class TestBitCast(unittest.TestCase):
def test_shape_change_bitcast(self):
with self.assertRaises(AssertionError):
_test_bitcast(Tensor([100000], dtype=dtypes.float32), dtypes.uint8, [100000])
def test_bitcast_float_to_int32(self):
a = Tensor([1.,2,3])
b = a.bitcast(dtypes.int32)
assert b.numpy()[0] == 0x3f800000
def test_bitcast_upcasted(self):
a = Tensor.zeros(100, 4, dtype=dtypes.int32).contiguous() + 0x3f800000
b = a.bitcast(dtypes.float32)
assert b.numpy()[0,0] == 1.
class TestInt16Dtype(TestDType): DTYPE = dtypes.int16
class TestUint16Dtype(TestDType):
DTYPE = dtypes.uint16
def test_uint16_to_int8_overflow(self):
_test_op(lambda: Tensor([2**16-1, 2**16-2, 1, 0], dtype=dtypes.uint16).cast(dtypes.int8), dtypes.int8, [-1, -2, 1, 0])
class TestInt32Dtype(TestDType): DTYPE = dtypes.int32
class TestUint32Dtype(TestDType): DTYPE = dtypes.uint32
class TestInt64Dtype(TestDType): DTYPE = dtypes.int64
class TestUint64Dtype(TestDType): DTYPE = dtypes.uint64
class TestBoolDtype(TestDType): DTYPE = dtypes.bool
class TestImageDType(unittest.TestCase):
def test_image_scalar(self):
assert dtypes.imagef((10,10)).scalar() == dtypes.float32
assert dtypes.imageh((10,10)).scalar() == dtypes.float32
def test_image_vec(self):
assert dtypes.imagef((10,10)).vec(4) == dtypes.float32.vec(4)
assert dtypes.imageh((10,10)).vec(4) == dtypes.float32.vec(4)
class TestEqStrDType(unittest.TestCase):
def test_image_ne(self):
if ImageDType is None: raise unittest.SkipTest("no ImageDType support")
assert dtypes.float == dtypes.float32, "float doesn't match?"
assert dtypes.imagef((1,2,4)) != dtypes.imageh((1,2,4)), "different image dtype doesn't match"
assert dtypes.imageh((1,2,4)) != dtypes.imageh((1,4,2)), "different shape doesn't match"
assert dtypes.imageh((1,2,4)) == dtypes.imageh((1,2,4)), "same shape matches"
assert isinstance(dtypes.imageh((1,2,4)), ImageDType)
def test_ptr_ne(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
# TODO: is this the wrong behavior?
assert PtrDType(dtypes.float32) == dtypes.float32
assert not (PtrDType(dtypes.float32) != dtypes.float32)
assert PtrDType(dtypes.float32) == PtrDType(dtypes.float32)
assert not (PtrDType(dtypes.float32) != PtrDType(dtypes.float32))
#assert PtrDType(dtypes.float32) != dtypes.float32
def test_strs(self):
if PtrDType is None: raise unittest.SkipTest("no PtrDType support")
self.assertEqual(str(dtypes.imagef((1,2,4))), "dtypes.imagef((1, 2, 4))")
self.assertEqual(str(PtrDType(dtypes.float32)), "ptr.dtypes.float")
class TestHelpers(unittest.TestCase):
signed_ints = (dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64)
uints = (dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64)
floats = (dtypes.float16, dtypes.float32, dtypes.float64)
@given(strat.sampled_from(signed_ints+uints), strat.integers(min_value=1, max_value=8))
def test_is_int(self, dtype, amt):
assert dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
@given(strat.sampled_from(uints), strat.integers(min_value=1, max_value=8))
def test_is_unsigned_uints(self, dtype, amt):
assert dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(strat.sampled_from(signed_ints), strat.integers(min_value=1, max_value=8))
def test_is_unsigned_signed_ints(self, dtype, amt):
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
@given(strat.sampled_from(floats), strat.integers(min_value=1, max_value=8))
def test_is_float(self, dtype, amt):
assert dtypes.is_float(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_int(dtype.vec(amt) if amt > 1 else dtype)
assert not dtypes.is_unsigned(dtype.vec(amt) if amt > 1 else dtype)
def test_bf16_is_float(self):
assert dtypes.is_float(dtypes.bfloat16)
@given(strat.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_float(d) or dtypes.is_int(d)]), strat.integers(min_value=2, max_value=8))
def test_scalar(self, dtype, amt):
assert dtype.vec(amt).scalar() == dtype
class TestTypeSpec(unittest.TestCase):
def setUp(self):
self.old_default_int, self.old_default_float = dtypes.default_int, dtypes.default_float
def tearDown(self):
dtypes.default_int, dtypes.default_float = self.old_default_int, self.old_default_float
def test_set_dtype_default(self):
dtypes.default_int = dtypes.int16
assert dtypes.default_int == dtypes.int16
dtypes.default_int = dtypes.int64
assert dtypes.default_int == dtypes.int64
dtypes.default_int = dtypes.int32
assert dtypes.default_int == dtypes.int32
dtypes.default_float = dtypes.float16
assert dtypes.default_float == dtypes.float16
dtypes.default_float = dtypes.float64
assert dtypes.default_float == dtypes.float64
@given(strat.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), strat.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_creation(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor(True).dtype == dtypes.bool
assert Tensor(None).dtype == dtypes.default_float
assert Tensor(2).dtype == dtypes.default_int
assert Tensor(2.34).dtype == dtypes.default_float
assert Tensor([]).dtype == dtypes.default_float
assert Tensor([1]).dtype == dtypes.default_int
assert Tensor([1.1]).dtype == dtypes.default_float
assert Tensor([0,1], dtype=dtypes.bfloat16).dtype == dtypes.bfloat16
assert Tensor.eye(0).dtype == dtypes.default_float
assert Tensor.eye(3).dtype == dtypes.default_float
assert Tensor.eye(3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.eye(3, dtype=dtypes.int64).dtype == dtypes.int64
@given(strat.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), strat.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_full(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor.ones([2,3]).dtype == dtypes.default_float
assert Tensor.zeros([2,3]).dtype == dtypes.default_float
assert Tensor.full([2,3], 3.3).dtype == dtypes.default_float
assert Tensor.full([2,3], 3).dtype == dtypes.default_int
assert Tensor.full([2,3], True).dtype == dtypes.bool
assert Tensor.zeros(3, 3).dtype == dtypes.default_float
assert Tensor.zeros(3, 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.zeros(3, 3, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.ones(3, 3).dtype == dtypes.default_float
assert Tensor.ones(3, 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.ones(3, 3, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.full((3, 3), 3).dtype == dtypes.default_int
assert Tensor.full((3, 3), 3.0).dtype == dtypes.default_float
assert Tensor.full((3, 3), 3, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.full((3, 3), 3, dtype=dtypes.int64).dtype == dtypes.int64
def test_reduce_0d_default(self):
assert Tensor.ones([2,3,0]).sum(2).dtype == dtypes.default_float
assert Tensor.ones([2,3,0], dtype=dtypes.int).sum(2).dtype == dtypes.int
@given(strat.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), strat.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_arange(self, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor.arange(5).dtype == dtypes.default_int
assert Tensor.arange(5.0).dtype == dtypes.default_float
assert Tensor.arange(5, dtype=dtypes.int16).dtype == dtypes.int16
assert Tensor.arange(5, dtype=dtypes.int64).dtype == dtypes.int64
assert Tensor.arange(5, dtype=dtypes.float16).dtype == dtypes.float16
assert Tensor.arange(3, 9, 0.7).dtype == dtypes.default_float
assert Tensor.arange(3, 8.5, 3).dtype == dtypes.default_float
@unittest.skipIf(Device.DEFAULT == "WEBGPU", "WEBGPU doesn't follow the bool ops spec")
@given(strat.sampled_from(core_dtypes), strat.sampled_from([operator.gt, operator.ge, operator.le, operator.lt, operator.eq, operator.ne]))
def test_bool_ops(self, dtype, op):
assert op(Tensor.rand(4, 4, dtype=dtype), Tensor.rand(4, 4, dtype=dtype)).dtype == dtypes.bool
@given(strat.sampled_from(core_dtypes),
strat.sampled_from([dtypes.int8,dtypes.int16,dtypes.int32,dtypes.int64]), strat.sampled_from([dtypes.float16,dtypes.float32,dtypes.float64]))
def test_functions_return_index(self, dtype, default_int, default_float):
dtypes.default_int, dtypes.default_float = default_int, default_float
assert Tensor([0, 1], dtype=dtype).argmax().dtype == dtypes.default_int
assert Tensor([0, 1], dtype=dtype).argmin().dtype == dtypes.default_int
assert Tensor([0, 1], dtype=dtype).multinomial().dtype == dtypes.default_int
class TestTypePromotion(unittest.TestCase):
@given(strat.sampled_from(core_dtypes))
def test_self_promo_to_self(self, dtype):
assert least_upper_dtype(dtype) == dtype
assert least_upper_dtype(dtype, dtype) == dtype
assert least_upper_dtype(dtype, dtype, dtype) == dtype
@given(strat.sampled_from(core_dtypes), strat.sampled_from(core_dtypes))
def test_promo_resulted_higher_than_inputs(self, dtype1, dtype2):
result = least_upper_dtype(dtype1, dtype2)
assert result >= dtype1 and result >= dtype2
def test_dtype_promo(self):
assert least_upper_dtype(dtypes.bool, dtypes.int8) == dtypes.int8
assert least_upper_dtype(dtypes.int8, dtypes.uint8) == dtypes.int16
assert least_upper_dtype(dtypes.uint8, dtypes.int16) == dtypes.int16
assert least_upper_dtype(dtypes.int16, dtypes.uint16) == dtypes.int32
assert least_upper_dtype(dtypes.uint16, dtypes.int32) == dtypes.int32
assert least_upper_dtype(dtypes.int32, dtypes.uint32) == dtypes.int64
assert least_upper_dtype(dtypes.uint32, dtypes.int64) == dtypes.int64
# similar to jax but we don't use weak type
assert least_upper_dtype(dtypes.int64, dtypes.uint64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.float32, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.bool, dtypes.float32) == dtypes.float32
assert least_upper_dtype(dtypes.bool, dtypes.float64) == dtypes.float64
assert least_upper_dtype(dtypes.float16, dtypes.int64) == dtypes.float16
assert least_upper_dtype(dtypes.float16, dtypes.uint64) == dtypes.float16
@given(strat.sampled_from(floats))
def test_float_to_float(self, dt):
assert least_upper_float(dt) == dt
class TestAutoCastType(unittest.TestCase):
def setUp(self):
self.old_default_int, self.old_default_float = dtypes.default_int, dtypes.default_float
def tearDown(self):
dtypes.default_int, dtypes.default_float = self.old_default_int, self.old_default_float
@given(strat.sampled_from([d for d in DTYPES_DICT.values() if dtypes.is_int(d) and is_dtype_supported(d)]))
def test_int_to_float_unary_func(self, dtype):
for func in [
lambda t: t.exp(),
lambda t: t.exp2(),
lambda t: t.log(),
lambda t: t.log2(),
lambda t: t.sqrt(),
lambda t: t.rsqrt(),
lambda t: t.sin(),
lambda t: t.cos(),
lambda t: t.tan(),
lambda t: t.sigmoid(),
]:
a = [2, 3, 4]
# float16 can have larger precision errors
np.testing.assert_allclose(func(Tensor(a, dtype=dtype)).numpy(), func(torch.tensor(a)), rtol=1e-3, atol=1e-3)
@given(strat.sampled_from(core_dtypes))
def test_broadcast_scalar(self, dt):
assert (Tensor.rand(4, 4, dtype=dt) + 2.3).dtype == (dt if dtypes.is_float(dt) else dtypes.default_float)
assert (Tensor.rand(4, 4, dtype=dt) + 2).dtype == (dt if dtypes.is_float(dt) or dtypes.is_int(dt) else dtypes.default_int)
if Device.DEFAULT != "WEBGPU" and dt != dtypes.bool:
assert (Tensor.rand(4, 4, dtype=dt) + True).dtype == dt
def test_sum(self):
assert (Tensor([0, 1], dtype=dtypes.bool)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int8)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int16)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int32)).sum().dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int64)).sum().dtype == dtypes.int64
assert (Tensor([0, 1], dtype=dtypes.uint8)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint16)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint32)).sum().dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint64)).sum().dtype == dtypes.uint64
assert (Tensor([0, 1], dtype=dtypes.float16)).sum().dtype == dtypes.float16
assert (Tensor([0, 1], dtype=dtypes.bfloat16)).sum().dtype == dtypes.bfloat16
assert (Tensor([0, 1], dtype=dtypes.float32)).sum().dtype == dtypes.float32
assert (Tensor([0, 1], dtype=dtypes.float64)).sum().dtype == dtypes.float64
def test_cumsum(self):
assert (Tensor([0, 1], dtype=dtypes.bool)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int8)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int16)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int32)).cumsum(0).dtype == dtypes.int32
assert (Tensor([0, 1], dtype=dtypes.int64)).cumsum(0).dtype == dtypes.int64
assert (Tensor([0, 1], dtype=dtypes.uint8)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint16)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint32)).cumsum(0).dtype == dtypes.uint32
assert (Tensor([0, 1], dtype=dtypes.uint64)).cumsum(0).dtype == dtypes.uint64
assert (Tensor([0, 1], dtype=dtypes.float16)).cumsum(0).dtype == dtypes.float16
assert (Tensor([0, 1], dtype=dtypes.bfloat16)).cumsum(0).dtype == dtypes.bfloat16
assert (Tensor([0, 1], dtype=dtypes.float32)).cumsum(0).dtype == dtypes.float32
assert (Tensor([0, 1], dtype=dtypes.float64)).cumsum(0).dtype == dtypes.float64
@given(strat.sampled_from(core_dtypes), strat.sampled_from(core_dtypes))
def test_matmul(self, dt1, dt2):
assert (Tensor([0, 1], dtype=dt1) @ Tensor([0, 1], dtype=dt2)).dtype == least_upper_dtype(dt1, dt2)
@staticmethod
def check_where_alternate_input_other(input_, other, data_type):
assert (Tensor([True, False]).where(input_, other)).dtype == data_type
assert (Tensor([True, False]).where(other, input_)).dtype == data_type
@given(strat.sampled_from(core_dtypes), strat.sampled_from(core_dtypes))
def test_where_no_scalar(self, dt1, dt2):
self.check_where_alternate_input_other(Tensor(2, dtype=dt1), Tensor(3, dtype=dt2), least_upper_dtype(dt1, dt2))
@given(strat.sampled_from(core_dtypes))
def test_where_one_scalar(self, dt):
t = Tensor(2, dtype=dt)
self.check_where_alternate_input_other(t, 3.2, (dt if dtypes.is_float(dt) else dtypes.default_float))
self.check_where_alternate_input_other(t, 3, (dt if dtypes.is_float(dt) or dtypes.is_int(dt) else dtypes.default_int))
self.check_where_alternate_input_other(t, True, dt)
def test_where_two_scalars(self):
self.check_where_alternate_input_other(3.1, 3.2, dtypes.default_float)
self.check_where_alternate_input_other(3.1, 3, dtypes.default_float)
self.check_where_alternate_input_other(3.1, True, dtypes.default_float)
self.check_where_alternate_input_other(3, 2, dtypes.default_int)
self.check_where_alternate_input_other(3, True, dtypes.default_int)
self.check_where_alternate_input_other(False, True, dtypes.bool)
@given(strat.sampled_from(core_dtypes), strat.sampled_from(core_dtypes))
def test_maximum(self, dt1, dt2):
assert Tensor([0, 1, 2], dtype=dt1).maximum(Tensor([2, 0, 5], dtype=dt2)).dtype == least_upper_dtype(dt1, dt2)
@given(strat.sampled_from(core_dtypes))
def test_maximum_const(self, dt):
assert Tensor([1, 2], dtype=dt).maximum(3.1).dtype == (dt if dtypes.is_float(dt) else dtypes.default_float)
assert Tensor([1, 2], dtype=dt).maximum(3).dtype == (dt if dtypes.is_float(dt) or dtypes.is_int(dt) else dtypes.default_int)
assert Tensor([1, 2], dtype=dt).maximum(True).dtype == dt
def test_div(self):
assert (Tensor([1, 2], dtype=dtypes.int32) / Tensor([2, 2], dtype=dtypes.int32)).dtype == dtypes.default_float
assert (Tensor([1, 2], dtype=dtypes.int16) / Tensor([2, 2], dtype=dtypes.int32)).dtype == dtypes.default_float
assert (Tensor([1, 2], dtype=dtypes.float32) / Tensor([2, 2], dtype=dtypes.float16)).dtype == dtypes.float32
assert (Tensor([1, 2], dtype=dtypes.int32) / Tensor([2, 2], dtype=dtypes.float16)).dtype == dtypes.float16
def test_div_const(self):
assert (Tensor([1, 2], dtype=dtypes.int32) / 2).dtype == dtypes.default_float
assert (Tensor([1, 2], dtype=dtypes.int32) / 2.0).dtype == dtypes.default_float
assert (Tensor([1, 2], dtype=dtypes.float16) / 2).dtype == dtypes.float16
assert (Tensor([1, 2], dtype=dtypes.float16) / 2.0).dtype == dtypes.float16
if __name__ == '__main__':
unittest.main()