forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coco.py
199 lines (161 loc) · 5.63 KB
/
coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import json
import pathlib
import zipfile
import numpy as np
from tinygrad.helpers import fetch
import pycocotools._mask as _mask
from examples.mask_rcnn import Masker
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
iou = _mask.iou
merge = _mask.merge
frPyObjects = _mask.frPyObjects
BASEDIR = pathlib.Path(__file__).parent / "COCO"
BASEDIR.mkdir(exist_ok=True)
def create_dict(key_row, val_row, rows): return {row[key_row]:row[val_row] for row in rows}
if not pathlib.Path(BASEDIR/'val2017').is_dir():
fn = fetch('http://images.cocodataset.org/zips/val2017.zip')
with zipfile.ZipFile(fn, 'r') as zip_ref:
zip_ref.extractall(BASEDIR)
fn.unlink()
if not pathlib.Path(BASEDIR/'annotations').is_dir():
fn = fetch('http://images.cocodataset.org/annotations/annotations_trainval2017.zip')
with zipfile.ZipFile(fn, 'r') as zip_ref:
zip_ref.extractall(BASEDIR)
fn.unlink()
with open(BASEDIR/'annotations/instances_val2017.json', 'r') as f:
annotations_raw = json.loads(f.read())
images = annotations_raw['images']
categories = annotations_raw['categories']
annotations = annotations_raw['annotations']
file_name_to_id = create_dict('file_name', 'id', images)
id_to_width = create_dict('id', 'width', images)
id_to_height = create_dict('id', 'height', images)
json_category_id_to_contiguous_id = {v['id']: i + 1 for i, v in enumerate(categories)}
contiguous_category_id_to_json_id = {v:k for k,v in json_category_id_to_contiguous_id.items()}
def encode(bimask):
if len(bimask.shape) == 3:
return _mask.encode(bimask)
elif len(bimask.shape) == 2:
h, w = bimask.shape
return _mask.encode(bimask.reshape((h, w, 1), order='F'))[0]
def decode(rleObjs):
if type(rleObjs) == list:
return _mask.decode(rleObjs)
else:
return _mask.decode([rleObjs])[:,:,0]
def area(rleObjs):
if type(rleObjs) == list:
return _mask.area(rleObjs)
else:
return _mask.area([rleObjs])[0]
def toBbox(rleObjs):
if type(rleObjs) == list:
return _mask.toBbox(rleObjs)
else:
return _mask.toBbox([rleObjs])[0]
def convert_prediction_to_coco_bbox(file_name, prediction):
coco_results = []
try:
original_id = file_name_to_id[file_name]
if len(prediction) == 0:
return coco_results
image_width = id_to_width[original_id]
image_height = id_to_height[original_id]
prediction = prediction.resize((image_width, image_height))
prediction = prediction.convert("xywh")
boxes = prediction.bbox.numpy().tolist()
scores = prediction.get_field("scores").numpy().tolist()
labels = prediction.get_field("labels").numpy().tolist()
mapped_labels = [contiguous_category_id_to_json_id[int(i)] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
except Exception as e:
print(file_name, e)
return coco_results
masker = Masker(threshold=0.5, padding=1)
def convert_prediction_to_coco_mask(file_name, prediction):
coco_results = []
try:
original_id = file_name_to_id[file_name]
if len(prediction) == 0:
return coco_results
image_width = id_to_width[original_id]
image_height = id_to_height[original_id]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
scores = prediction.get_field("scores").numpy().tolist()
labels = prediction.get_field("labels").numpy().tolist()
masks = masker([masks], [prediction])[0].numpy()
rles = [
encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [contiguous_category_id_to_json_id[int(i)] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
except Exception as e:
print(file_name, e)
return coco_results
def accumulate_predictions_for_coco(coco_results, json_result_file, rm=False):
path = pathlib.Path(json_result_file)
if rm and path.exists(): path.unlink()
with open(path, "a") as f:
for s in coco_results:
f.write(json.dumps(s))
f.write('\n')
def remove_dup(l):
seen = set()
seen_add = seen.add
return [x for x in l if not (x in seen or seen_add(x))]
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, np.ndarray):
return obj.tolist()
return super(NpEncoder, self).default(obj)
def evaluate_predictions_on_coco(json_result_file, iou_type="bbox"):
coco_results = []
with open(json_result_file, "r") as f:
for line in f:
coco_results.append(json.loads(line))
coco_gt = COCO(str(BASEDIR/'annotations/instances_val2017.json'))
set_of_json = remove_dup([json.dumps(d, cls=NpEncoder) for d in coco_results])
unique_list = [json.loads(s) for s in set_of_json]
with open(f'{json_result_file}.flattend', "w") as f:
json.dump(unique_list, f)
coco_dt = coco_gt.loadRes(str(f'{json_result_file}.flattend'))
coco_eval = COCOeval(coco_gt, coco_dt, iou_type)
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
return coco_eval
def iterate(files, bs=1):
batch = []
for file in files:
batch.append(file)
if len(batch) >= bs: yield batch; batch = []
if len(batch) > 0: yield batch; batch = []