-
Notifications
You must be signed in to change notification settings - Fork 0
/
collect_data.py
209 lines (179 loc) · 6.38 KB
/
collect_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import time
from nba_api.stats.endpoints import (
leaguegamefinder,
boxscoreplayertrackv2,
boxscoreadvancedv2,
boxscoretraditionalv2,
boxscorefourfactorsv2,
boxscoremiscv2,
boxscorescoringv2,
boxscoreusagev2,
)
from nba_api.stats.static import teams
import pandas as pd
from models import (
AbsoluteStatistics,
Misc,
PlayerPercentages,
PlayerPerformance,
Ratings,
TeamPercentages,
TeamPerformance,
)
from tqdm import tqdm
import pymongo
from constants import MONGO_DB, MONGO_NAME, MONGO_PW
from helpers import (
get_combined_player_box_score,
get_combined_team_box_score,
get_player_and_team_box_scores,
)
pd.options.mode.chained_assignment = None
client = pymongo.MongoClient(
f"mongodb+srv://{MONGO_NAME}:{MONGO_PW}@cluster0.sfhws.mongodb.net/{MONGO_DB}?retryWrites=true&w=majority"
)
db = client.superteam
upload_count = 100
nba_teams = teams.get_teams()
team_df = pd.DataFrame(nba_teams)
print("Loading Games...")
nba_games = leaguegamefinder.LeagueGameFinder(
league_id_nullable="00"
).get_data_frames()[0]
game_ids = set(nba_games.GAME_ID.to_list())
print("Loading Database...")
existing_player_performances = list(
db.playerPerformances.find({}, projection=["GAME_ID", "PLAYER_ID"])
)
existing_team_performances = list(
db.teamPerformances.find({}, projection=["GAME_ID", "TEAM_ID"])
)
new_player_performances, new_team_performances = [], []
counter = 0
if not pd.DataFrame(existing_team_performances).empty:
existing_game_ids = list(set(pd.DataFrame(existing_team_performances).GAME_ID))
else:
existing_game_ids = []
for i, game_id in tqdm(enumerate(list(game_ids)), total=len(list(game_ids))):
game_date = list(set(nba_games[nba_games.GAME_ID == game_id].GAME_DATE))[0]
if counter == upload_count:
print("Uploading Data...")
db.playerPerformances.insert_many(new_player_performances)
db.teamPerformances.insert_many(new_team_performances)
time.sleep(1)
# Initialize
existing_performances = list(
db.playerPerformances.find({}, projection=["GAME_ID", "PLAYER_ID"])
)
existing_team_performances = list(
db.teamPerformances.find({}, projection=["GAME_ID", "TEAM_ID"])
)
existing_game_ids = list(set(pd.DataFrame(existing_team_performances).GAME_ID))
new_player_performances, new_team_performances = [], []
counter = 0
if game_id in existing_game_ids:
continue
# Api Calls
try:
advanced_box_scores = boxscoreadvancedv2.BoxScoreAdvancedV2(game_id)
advanced_box_score, advanced_team_box_score = get_player_and_team_box_scores(
advanced_box_scores
)
basic_box_scores = boxscoreplayertrackv2.BoxScorePlayerTrackV2(game_id)
basic_box_score, basic_team_box_score = get_player_and_team_box_scores(
basic_box_scores
)
traditional_box_scores = boxscoretraditionalv2.BoxScoreTraditionalV2(game_id)
(
traditional_box_score,
traditional_team_box_score,
) = get_player_and_team_box_scores(traditional_box_scores)
four_factors_box_scores = boxscorefourfactorsv2.BoxScoreFourFactorsV2(game_id)
(
four_factors_box_score,
four_factors_team_box_score,
) = get_player_and_team_box_scores(four_factors_box_scores)
misc_box_scores = boxscoremiscv2.BoxScoreMiscV2(game_id)
misc_box_score, misc_team_box_score = get_player_and_team_box_scores(
misc_box_scores
)
scoring_box_scores = boxscorescoringv2.BoxScoreScoringV2(game_id)
scoring_box_score, scoring_team_box_score = get_player_and_team_box_scores(
scoring_box_scores
)
usage_box_scores = boxscoreusagev2.BoxScoreUsageV2(game_id)
usage_box_score, usage_team_box_score = get_player_and_team_box_scores(
usage_box_scores
)
except Exception as e:
print(e)
continue
if basic_box_score.empty or advanced_box_score.empty or traditional_box_score.empty:
continue
try:
combined_box_score = get_combined_player_box_score(
basic_box_score,
advanced_box_score,
traditional_box_score,
four_factors_box_score,
misc_box_score,
scoring_box_score,
usage_box_score,
)
combined_team_box_score = get_combined_team_box_score(
basic_team_box_score,
advanced_team_box_score,
traditional_team_box_score,
four_factors_team_box_score,
misc_team_box_score,
scoring_team_box_score,
usage_team_box_score,
)
except Exception as e:
print(e)
continue
if combined_box_score.empty or combined_team_box_score.empty:
continue
combined_box_score = combined_box_score.drop_duplicates()
combined_team_box_score = combined_team_box_score.drop_duplicates()
for i, row in combined_box_score.iterrows():
performance = PlayerPerformance(
**row,
GAME_DATE=game_date,
PERCENTAGES=PlayerPercentages(**row),
ABSOLUTE_STATISTICS=AbsoluteStatistics(**row),
RATINGS=Ratings(**row),
MISC=Misc(**row),
)
existing_performance = next(
(
item
for item in existing_player_performances
if item["GAME_ID"] == performance.GAME_ID
and item["PLAYER_ID"] == performance.PLAYER_ID
),
None,
)
if not existing_performance:
new_player_performances.append(performance.dict())
for i, row in combined_team_box_score.iterrows():
performance = TeamPerformance(
**row,
GAME_DATE=game_date,
PERCENTAGES=TeamPercentages(**row),
ABSOLUTE_STATISTICS=AbsoluteStatistics(**row),
RATINGS=Ratings(**row),
MISC=Misc(**row),
)
existing_performance = next(
(
item
for item in existing_team_performances
if item["GAME_ID"] == performance.GAME_ID
and item["TEAM_ID"] == performance.TEAM_ID
),
None,
)
if not existing_performance:
new_team_performances.append(performance.dict())
counter += 1