forked from longtailfinancial/tokenspice2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_1.py
executable file
·223 lines (185 loc) · 8.25 KB
/
plot_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/env python
import copy
import matplotlib
from matplotlib import pyplot
import numpy
import os
from pylab import figure, axes, pie, title, show
import sys
from util.constants import * #S_PER_YEAR etc
def listToFloat(x_array):
return [float(x_item) for x_item in x_array]
def applyMult(y, mult):
if mult == MULT1:
return y
elif mult == MULT100:
return list(numpy.array(y) * 100.0)
elif mult == DIV1M:
return list(numpy.array(y) / 1e6)
elif mult == DIV1B:
return list(numpy.array(y) / 1e9)
else:
raise ValueError(mult)
def multUnitStr(mult, unit):
if mult == MULT1 and unit == DOLLAR:
return "$"
elif mult == DIV1M and unit == DOLLAR:
return "$M"
elif mult == DIV1M and unit == COUNT:
return "count, in millions"
elif mult == DIV1B and unit == DOLLAR:
return "$B"
elif mult == DIV1B and unit == COUNT:
return "count, in billions"
elif mult == MULT100 and unit == PERCENT:
return "%"
else:
raise ValueError(f"can't handle mult={mult} with unit={unit}")
return
if __name__== '__main__':
#set help message
help = """
Usage: plot_1 INPUT_DIR
INPUT_DIR -- string -- input directory for csv file.
OUTPUT_DIR -- string -- output directory for png files. Can't exist yet.
"""
#got the right number of args? If not, output help
num_args = len(sys.argv) - 1
num_args_needed = [2]
if num_args not in num_args_needed:
print(help)
if num_args > 0:
print(f"Got {num_args} argument(s), need {num_args_needed}.\n")
sys.exit(0)
#extract inputs
input_dir = sys.argv[1]
output_dir = sys.argv[2]
base_input_filename = "data.csv" #magic number. Set in engine/SimEngine.py
full_input_filename = os.path.join(input_dir, base_input_filename)
print(f"Argument INPUT_DIR: '{input_dir}'")
print(f"Argument OUTPUT_DIR: '{output_dir}'")
print(f"Base input filename: '{base_input_filename}' (hardcoded)")
print(f"Full input filename: '{full_input_filename}'")
print()
#corner cases
if not os.path.exists(input_dir):
print(f"Input directory '{input_dir}' does not exist. Exiting.")
sys.exit(0)
if not os.path.exists(full_input_filename):
print(f"Input filename '{full_input_filename}' does not exist. Exiting.")
sys.exit(0)
if os.path.exists(output_dir):
print(f"Output path '{output_dir}' already exists. Exiting.")
sys.exit(0)
#create output dir
os.mkdir(output_dir)
#====================================
#do work
import csv
header = None
values = []
with open(full_input_filename, newline='') as csvfile:
csvreader = csv.reader(csvfile, delimiter=',')
for row in csvreader: #row = ['Tick', 'Second', ..] or [1.0, 100.0, ..]
if header is None:
header = row
header = [param.strip() for param in header]
else:
values.append(row)
values = numpy.array(values) #[tick_i, valuetype_i]
#header has these columns (as strs): {Tick, Second, Month, Year, Num_mkts}
# and *many* more: see what gets added to 'dataheader' in SimEngine.createLogData().
#plot
x = listToFloat(values[:,header.index("Year")])
#what to plot: (name in header, name for plot)
LINEAR, LOG, BOTH = 'linear', 'log', 'both' #pyplot.yscale interprets 1st 2
MULT1, MULT100, DIV1M, DIV1B = 0, 1, 2, 3 #multiply or divide the value?
COUNT, DOLLAR, PERCENT = "#", "$", "%" #units
class Param:
def __init__(self, y_header_names, labels, y_pretty_name, y_scale, mult, unit):
self.y_header_names = y_header_names # list[str]
self.labels = labels #list[str]
self.y_pretty_name = y_pretty_name #str
self.y_scale = y_scale #one of LINEAR, ..
self.mult = mult #one of MULT1, ..
self.unit = unit #one of COUNT, ..
y_params = [
Param(["OCEAN_price"], [""], "OCEAN Price", LOG, MULT1, DOLLAR),
#Param(["ocean_rev_growth/yr"], [""], "Annual Ocean Revenue Growth", BOTH, MULT100, PERCENT),
Param(["overall_valuation", "fundamentals_valuation","speculation_valuation"],
["Overall", "Fundamentals (P/S=30)", "Speculation"], "Valuation", LOG, DIV1M, DOLLAR),
Param(["dao_USD/mo", "dao_OCEAN_in_USD/mo", "dao_total_in_USD/mo"],
["Income as USD (ie network revenue)", "Income as OCEAN (ie from 51%; priced in USD)", "Total Income"],
"Monthly OceanDAO Income", LOG, DIV1M, DOLLAR),
Param(["ocean_rev/yr","allmkts_rev/yr"], ["Ocean", "All marketplaces"],
"Annual Revenue", LOG, DIV1M, DOLLAR),
Param(["tot_OCEAN_supply", "tot_OCEAN_minted", "tot_OCEAN_burned"],
["Total supply","Tot # Minted","Tot # Burned"], "OCEAN Token Count", BOTH, DIV1M, COUNT),
Param(["OCEAN_minted/mo", "OCEAN_burned/mo"], ["# Minted/mo", "# Burned/mo"],
"Monthly # OCEAN Minted & Burned", BOTH, DIV1M, COUNT),
Param(["rnd_to_sales_ratio", "mkts_annual_growth_rate"], ["R&D/sales ratio", "Marketplaces annual growth rate"],
"R&D/Sales Ratio and Marketplaces Growth Rate", BOTH, MULT100, PERCENT),
Param(["RND/mo"], [""], "Monthly R&D Spend", BOTH, DIV1M, DOLLAR),
# Param(["OCEAN_burned_USD/mo", "OCEAN_minted_USD/mo"],
# ["$ of OCEAN Burned/mo", "$ of OCEAN Minted/mo"],
# "Monthly OCEAN (in USD) Minted & Burned", LOG, DIV1M, DOLLAR),
# Param(["OCEAN_burned_USD/mo", "ocean_rev/mo", "allmkts_rev/mo"],
# ["$ OCEAN Burned monthly", "Ocean monthly revenue", "Marketplaces monthly revenue"],
# "Monthly OCEAN Burned & Revenues", LOG, DIV1M, DOLLAR),
]
#replace BOTH with 2 entries
y_params2 = []
for p in y_params:
if p.y_scale in [LINEAR, BOTH]:
p2 = copy.copy(p)
p2.y_scale = LINEAR
y_params2.append(p2)
if p.y_scale in [LOG, BOTH]:
p2 = copy.copy(p)
p2.y_scale = LOG
y_params2.append(p2)
y_params = y_params2
#===========================================================
#main loop to create pngs
for p in y_params:
ys = [listToFloat(values[:,header.index(name)])
for name in p.y_header_names]
ys = [applyMult(y, p.mult) for y in ys]
fig, ax = pyplot.subplots()
ax.set_xlabel("Year")
for y, label in zip(ys, p.labels):
if label == "":
ax.plot(x, y)
else:
ax.plot(x, y, label=label)
if len(p.labels) > 1:
ax.legend()
mult_unit_s = multUnitStr(p.mult, p.unit)
ax.set_ylabel(f"{p.y_pretty_name} ({mult_unit_s})")
ax.set_title(f"{p.y_pretty_name}" + f" ({p.y_scale})")
pyplot.yscale(p.y_scale)
if p.y_scale == LOG: #turn off exponential notation
ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter())
ax.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.2g'))
max_y = max([max(y) for y in ys])
if max_y < 1000.0:
ax.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%.2f'))
max_x = max(10, math.ceil(max(x)))
if max_x < 12:
xticks = list(range(max_x+1))
elif max_x < 22:
xticks = [i for i in range(max_x+1) if (i%2)==0]
elif max_x < 52:
xticks = [i for i in range(max_x+1) if (i%5)==0]
elif max_x < 152:
xticks = [i for i in range(max_x+1) if (i%10)==0]
elif max_x < 202:
xticks = [i for i in range(max_x+1) if (i%20)==0]
pyplot.xticks(xticks)
#pyplot.show() #popup
base_output_filename = f"{p.y_pretty_name}_{p.y_scale}.png".replace('/',"_per_").replace(" ","_").replace(",","_").replace("'","").replace("__","_")
full_output_filename = os.path.join(output_dir, base_output_filename)
pyplot.savefig(full_output_filename,bbox_inches='tight')
print(f"Created '{full_output_filename}'")
#===========================================================
print("Done")