-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsacredrun.py
255 lines (202 loc) · 9.54 KB
/
sacredrun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import csv
import sys
import pandas as pd
import numpy as np
from sacred import Experiment
from sacred.observers import MongoObserver
from agents.agent import DDPG_Agent
from agents.agent_simple import DDPG as DDPG_Agent_Simple
from agents.policy_search import PolicySearch_Agent
from agents.random_binary_agent import Random_Binary_Agent
from collections import deque
from tasks import TakeOff_Task
import visuals as vs
ex = Experiment()
ex.observers.append(MongoObserver.create(db_name='sacred'))
@ex.config
def config():
# Noise process
exploration_mu = 0.
exploration_theta = 0.7
exploration_sigma = 0.2
# Replay memory
buffer_size = 100000
batch_size = 256
# Algorithm parameters
gamma = 0.99 # discount factor
tau = 0.1 # for soft update of target parameters
# Experiment
num_episodes = 1000
runtime = 5.
success_mem_len = 10
minimum_successes = 9
# Task parameters
init_velocities = np.array([.1, .1, .1]) # initial velocities
init_angle_velocities = np.array([0., 0., 0.]) # initial angle velocities
file_output = 'data.txt' # file name for saved results
init_pose = np.array([0., 0., 10., 0., 0., 0.]) # initial pose
action_low = 10
action_high = 900
action_size = 4
action_repeat = 3
target_pos = np.array([0., 0., 50.])
# experiment logging parameters
n_mean = 10
test_log_file_name = 'test_log.txt'
write_train_log = False
# which agent to run
agents = ['DDPG', 'Policy_Search', 'Random_Binary', 'Simple']
agent_type = agents[3]
success_distance=2
@ex.capture
def init(target_pos, init_pose, init_angle_velocities, init_velocities, runtime, action_low, action_high, agent_type,
action_repeat, action_size, success_mem_len,
gamma=0.9, tau=0.1, buffer_size=100000, batch_size=128, exploration_mu=0,
exploration_theta=0.15, exploration_sigma=0.2, success_distance=1):
task = TakeOff_Task(target_pos=target_pos, init_pose=init_pose,
init_angle_velocities=init_angle_velocities, init_velocities=init_velocities,
runtime=runtime)
task.configure(action_repeat=action_repeat, action_low=action_low, action_high=action_high, action_size=action_size,
target_pos=target_pos, init_velocities=init_velocities, init_angle_velocities=init_angle_velocities,
init_pose=init_pose, success_distance=success_distance)
if agent_type == 'DDPG':
agent = DDPG_Agent(task)
agent.configure(gamma, tau, buffer_size, batch_size, exploration_mu, exploration_theta, exploration_sigma)
if agent_type == 'Policy_Search':
agent = PolicySearch_Agent(task)
if agent_type == 'Random_Binary':
agent = Random_Binary_Agent(task)
agent.configure(success_mem_len)
if agent_type == 'Simple':
agent = DDPG_Agent_Simple(task)
agent.configure(gamma, tau, buffer_size, batch_size, exploration_mu, exploration_theta, exploration_sigma)
return task, agent
@ex.capture
def train(_run, task, agent, num_episodes, n_mean, write_train_log, success_mem_len, minimum_successes):
rewards = np.array([])
successes = deque([], maxlen=success_mem_len)
if write_train_log:
f = open('rewards_log.txt', 'w')
labels = ['Episode', 'Reward', 'time', 'x', 'y', 'z', 'phi', 'theta', 'psi', 'x_velocity',
'y_velocity', 'z_velocity', 'phi_velocity', 'theta_velocity',
'psi_velocity', 'rotor1', 'rotor2', 'rotor3', 'rotor4', 'p', 'success']
results = []
try:
for i_episode in range(1, num_episodes + 1):
state = agent.reset_episode() # start a new episode
total_reward = 0.
p = 1 - (i_episode / (num_episodes * 0.7)) ** 0.5 # exploration / exploitation trade off
p = max(p, 0)
actions = []
while True:
action = agent.act(state, p)
next_state, reward, done = task.step(action)
agent.step(action, reward, next_state, done)
state = next_state
total_reward += reward
actions.append(action)
result = {a : 0. for a in labels}
result['Episode'] = i_episode
result['Reward'] = reward
result['time'] = task.sim.time
result['x'] = task.sim.pose[0]
result['y'] = task.sim.pose[1]
result['z'] = task.sim.pose[2]
result['phi'] = task.sim.pose[3]
result['theta'] = task.sim.pose[4]
result['psi'] = task.sim.pose[5]
result['x_velocity'] = task.sim.v[0]
result['y_velocity'] = task.sim.v[1]
result['z_velocity'] = task.sim.v[2]
result['phi_velocity'] = task.sim.angular_v[0]
result['theta_velocity'] = task.sim.angular_v[1]
result['psi_velocity'] = task.sim.angular_v[2]
result['rotor1'] = action[0]
result['rotor2'] = action[1]
result['rotor3'] = action[2]
result['rotor4'] = action[3]
result['p'] = p
result['success'] = task.success
results.append(result)
if done:
actions = np.array(actions).reshape(-1, 4)
means = actions.mean(axis=0)
stds = actions.std(axis=0)
mins = actions.min(axis=0)
maxs = actions.max(axis=0)
print("\rEpisode = {:4d}, Reward = {:8.4f}, {:7} ({:.2f}), Rotors mean: {:03.0f} {:03.0f} {:03.0f} {:03.0f}".format(
i_episode, total_reward, ('Success' if agent.task.success else 'Fail ({})'.format(agent.task.outcome)),
agent.task.distance_to_target, means[0], means[1], means[2], means[3]))
print("\r{:>60}std: {:03.0f} {:03.0f} {:03.0f} {:03.0f}".format('',
stds[0], stds[1], stds[2], stds[3], end=""
))
print("\r{:>60}min: {:03.0f} {:03.0f} {:03.0f} {:03.0f}".format('',
mins[0], mins[1], mins[2], mins[3], end=""
))
print("\r{:>60}max: {:03.0f} {:03.0f} {:03.0f} {:03.0f}".format('',
maxs[0], maxs[1], maxs[2], maxs[3], end=""
))
if write_train_log:
f.writelines(str(total_reward) + '\n')
f.flush()
rewards = np.append(rewards, total_reward)
n = n_mean if n_mean < len(rewards) else len(rewards)
moving_average = np.sum(rewards[-n:])/n
_run.log_scalar('Reward', total_reward, i_episode)
_run.log_scalar('Distance', agent.task.distance_to_target)
_run.log_scalar('Past {:d} episode mean reward'.format(n_mean), moving_average, i_episode)
total_reward = 0
successes.append(agent.task.success)
break
if sum(successes) >= minimum_successes:
break
sys.stdout.flush()
except KeyboardInterrupt:
results = pd.DataFrame(results)
return results.loc[results['Episode'] != results['Episode'].max()]
return pd.DataFrame(results)
@ex.capture
def test(_run, agent, task, test_log_file_name, init_pose):
done = False
labels = ['time', 'x', 'y', 'z', 'phi', 'theta', 'psi', 'x_velocity',
'y_velocity', 'z_velocity', 'phi_velocity', 'theta_velocity',
'psi_velocity', 'rotor_speed1', 'rotor_speed2', 'rotor_speed3', 'rotor_speed4']
results = {x: [] for x in labels}
# Run the simulation, and save the results.
with open(test_log_file_name, 'w') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(labels)
state = agent.reset_episode()
while True:
rotor_speeds = agent.act(state)
state, _, done = task.step(rotor_speeds)
to_write = [task.sim.time] + list(task.sim.pose) + list(task.sim.v) + list(task.sim.angular_v) + list(rotor_speeds)
_run.log_scalar('X', task.sim.pose[0])
_run.log_scalar('Y', task.sim.pose[1])
_run.log_scalar('Z', task.sim.pose[2])
_run.log_scalar('phi', task.sim.pose[3])
_run.log_scalar('theta', task.sim.pose[4])
_run.log_scalar('psi', task.sim.pose[5])
_run.log_scalar('A1', rotor_speeds[0])
_run.log_scalar('A2', rotor_speeds[1])
_run.log_scalar('A3', rotor_speeds[2])
_run.log_scalar('A4', rotor_speeds[3])
_run.log_scalar('X-v', task.sim.v[0])
_run.log_scalar('Y-v', task.sim.v[1])
_run.log_scalar('Z-v', task.sim.v[2])
for ii in range(len(labels)):
results[labels[ii]].append(to_write[ii])
writer.writerow(to_write)
if done:
break
@ex.automain
def main(_run):
task, agent = init()
results = train(_run, task, agent)
results.to_csv('results.csv')
#os.mkdir(os.path.join('runs', str(_run._id)))
#agent.actor_target.model.save(os.path.join('runs', str(_run._id), 'actor.h5'))
#agent.critic_target.model.save(os.path.join('runs', str(_run._id), 'critic.h5'))
#ex.add_artifact(os.path.join('runs', str(_run._id), 'actor.h5'))
#ex.add_artifact(os.path.join('runs', str(_run._id), 'critic.h5'))
test(_run, agent, task)