Skip to content

Latest commit

 

History

History
52 lines (41 loc) · 2.74 KB

README.md

File metadata and controls

52 lines (41 loc) · 2.74 KB

Examples

Tutorials

  • knet-tutorial: Linear, MLP, CNN, RNN models; gradients and SGD; overfitting and dropout; sequences and minibatching etc.
  • julia-tutorial: Julia examples demonstrating arrays, tuples, dictionaries, indexing etc.
  • optimizers: Try various optimizers (SGD, Momentum, Adam...) on LeNet.
  • rnn-tutorial: RNN tutorial notebook with BPTT, LSTM, S2S.

Benchmarks

  • DeepLearningFrameworks: Notebooks comparing CNTK, Caffe2, Chainer, Gluon, Keras, Knet, Lasagne, MXNet, PyTorch, TensorFlow on CNN and RNN examples.
  • dynet-benchmark: Four dynamic neural network examples comparing Knet with DyNet and Chainer from dynet-benchmark.

Models

Linear

MLP

CNN

RNN

Reinforcement Learning

  • dynamic programming : Solving a Markov Decision process with Value Iteration and Policy Iteration.
  • policy gradient : Demonstration of the REINFORCE and Actor-Critic algorithms on simple environments.
  • dqn : Train a DQN on the CartPole environment.

Other