-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathlstm_combo.py
408 lines (352 loc) · 15.3 KB
/
lstm_combo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from data_handler import *
import lstm
class LSTMCombo(object):
def __init__(self, model):
self.model_ = model
self.lstm_stack_enc_ = lstm.LSTMStack()
self.lstm_stack_dec_ = lstm.LSTMStack()
self.lstm_stack_fut_ = lstm.LSTMStack()
self.decoder_copy_init_state_ = model.decoder_copy_init_state
self.future_copy_init_state_ = model.future_copy_init_state
# add LSTM blocks for encoder, decoder and future predictor
for l in model.lstm:
self.lstm_stack_enc_.Add(lstm.LSTM(l))
if model.dec_seq_length > 0:
for l in model.lstm_dec:
self.lstm_stack_dec_.Add(lstm.LSTM(l))
if model.future_seq_length > 0:
for l in model.lstm_future:
self.lstm_stack_fut_.Add(lstm.LSTM(l))
# do other initialization stuff
assert model.dec_seq_length > 0 or model.future_seq_length > 0
self.is_conditional_dec_ = model.dec_conditional
self.is_conditional_fut_ = model.future_conditional
if self.is_conditional_dec_ and model.dec_seq_length > 0:
assert self.lstm_stack_dec_.HasInputs()
if self.is_conditional_fut_ and model.future_seq_length > 0:
assert self.lstm_stack_fut_.HasInputs()
self.squash_relu_ = model.squash_relu
self.binary_data_ = model.binary_data or model.squash_relu
self.squash_relu_lambda_ = model.squash_relu_lambda
self.relu_data_ = model.relu_data
# load model if available
if len(model.timestamp) > 0:
old_st = model.timestamp[-1]
ckpt = os.path.join(model.checkpoint_dir, '%s_%s.h5' % (model.name, old_st))
f = h5py.File(ckpt)
self.lstm_stack_enc_.Load(f)
self.lstm_stack_dec_.Load(f)
self.lstm_stack_fut_.Load(f)
f.close()
def Fprop(self, train=False):
if self.squash_relu_:
self.v_.apply_relu_squash(lambdaa=self.squash_relu_lambda_)
self.lstm_stack_enc_.Reset()
self.lstm_stack_dec_.Reset()
self.lstm_stack_fut_.Reset()
# Fprop through encoder.
for t in xrange(self.enc_seq_length_):
self.lstm_stack_enc_.Fprop(input_frame=self.v_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_))
init_state = self.lstm_stack_enc_.GetAllCurrentStates()
# Fprop through decoder.
for t in xrange(self.dec_seq_length_):
this_init_state = init_state if t == 0 else []
if self.is_conditional_dec_ and t > 0:
t2 = self.enc_seq_length_ - t
input_frame=self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
else:
input_frame = None
self.lstm_stack_dec_.Fprop(input_frame=input_frame, init_state=this_init_state,
output_frame=self.v_dec_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_), copy_init_state=self.decoder_copy_init_state_)
# Fprop through future predictor.
for t in xrange(self.future_seq_length_):
this_init_state = init_state if t == 0 else []
if self.is_conditional_fut_ and t > 0:
if train:
t2 = self.enc_seq_length_ + t - 1
input_frame=self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
else:
# Instead of conditioning on true frame, condition on the generated frame at the test time
t2 = t - 1
input_frame=self.v_fut_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
else:
input_frame = None
output_frame = self.v_fut_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
self.lstm_stack_fut_.Fprop(input_frame=input_frame, init_state=this_init_state,
output_frame=output_frame, copy_init_state=self.future_copy_init_state_)
if not train:
if self.binary_data_:
output_frame.apply_sigmoid()
elif self.relu_data_:
output_frame.lower_bound(0)
if self.binary_data_:
if self.dec_seq_length_ > 0:
self.v_dec_.apply_sigmoid()
if self.future_seq_length_ > 0 and train:
self.v_fut_.apply_sigmoid()
elif self.relu_data_:
if self.dec_seq_length_ > 0:
self.v_dec_.lower_bound(0)
if self.future_seq_length_ > 0 and train:
self.v_fut_.lower_bound(0)
def BpropAndOutp(self):
if self.binary_data_:
pass
elif self.relu_data_:
if self.dec_seq_length_ > 0:
self.v_dec_deriv_.apply_rectified_linear_deriv(self.v_dec_)
if self.future_seq_length_ > 0:
self.v_fut_deriv_.apply_rectified_linear_deriv(self.v_fut_)
init_state = self.lstm_stack_enc_.GetAllCurrentStates()
init_deriv = self.lstm_stack_enc_.GetAllCurrentDerivs()
# Backprop through decoder.
for t in xrange(self.dec_seq_length_-1, -1, -1):
this_init_state = init_state if t == 0 else []
this_init_deriv = init_deriv if t == 0 else []
if self.is_conditional_dec_ and t > 0:
t2 = self.enc_seq_length_ - t
input_frame=self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
else:
input_frame = None
self.lstm_stack_dec_.BpropAndOutp(input_frame=input_frame,
init_state=this_init_state,
init_deriv=this_init_deriv,
output_deriv=self.v_dec_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_), copy_init_state=self.decoder_copy_init_state_)
# Backprop through future predictor.
for t in xrange(self.future_seq_length_-1, -1, -1):
this_init_state = init_state if t == 0 else []
this_init_deriv = init_deriv if t == 0 else []
if self.is_conditional_fut_ and t > 0:
t2 = self.enc_seq_length_ + t - 1
input_frame=self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
else:
input_frame = None
self.lstm_stack_fut_.BpropAndOutp(input_frame=input_frame,
init_state=this_init_state,
init_deriv=this_init_deriv,
output_deriv=self.v_fut_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_), copy_init_state=self.future_copy_init_state_)
# Backprop thorough encoder.
for t in xrange(self.enc_seq_length_-1, -1, -1):
self.lstm_stack_enc_.BpropAndOutp(input_frame=self.v_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_))
def Update(self):
self.lstm_stack_enc_.Update()
self.lstm_stack_dec_.Update()
self.lstm_stack_fut_.Update()
def ComputeDeriv(self):
for t in xrange(self.dec_seq_length_):
t2 = self.enc_seq_length_ - t - 1
dec = self.v_dec_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
v = self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
deriv = self.v_dec_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
dec.subtract(v, target=deriv)
for t in xrange(self.future_seq_length_):
t2 = t + self.enc_seq_length_
f = self.v_fut_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
v = self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
deriv = self.v_fut_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
f.subtract(v, target=deriv)
def GetLoss(self):
for t in xrange(self.dec_seq_length_):
t2 = self.enc_seq_length_ - t - 1
dec = self.v_dec_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
v = self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
deriv = self.v_dec_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
if self.binary_data_:
cm.cross_entropy_bernoulli(v, dec, target=deriv)
else:
dec.subtract(v, target=deriv)
for t in xrange(self.future_seq_length_):
t2 = t + self.enc_seq_length_
f = self.v_fut_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
v = self.v_.col_slice(t2 * self.num_dims_, (t2+1) * self.num_dims_)
deriv = self.v_fut_deriv_.col_slice(t * self.num_dims_, (t+1) * self.num_dims_)
if self.binary_data_:
cm.cross_entropy_bernoulli(v, f, target=deriv)
else:
f.subtract(v, target=deriv)
loss_fut = 0
loss_dec = 0
if self.binary_data_:
if self.dec_seq_length_ > 0:
loss_dec = self.v_dec_deriv_.sum()
if self.future_seq_length_ > 0:
loss_fut = self.v_fut_deriv_.sum()
else:
if self.dec_seq_length_ > 0:
loss_dec = 0.5 * (self.v_dec_deriv_.euclid_norm()**2)
if self.future_seq_length_ > 0:
loss_fut = 0.5 * (self.v_fut_deriv_.euclid_norm()**2)
return loss_dec, loss_fut
def Validate(self, data):
data.Reset()
dataset_size = data.GetDatasetSize()
batch_size = data.GetBatchSize()
num_batches = dataset_size / batch_size
loss_dec = 0
loss_fut = 0
for ii in xrange(num_batches):
v_cpu, _ = data.GetBatch()
self.v_.overwrite(v_cpu)
self.Fprop()
this_loss_dec, this_loss_fut = self.GetLoss()
if self.dec_seq_length_ > 0:
loss_dec += this_loss_dec / (batch_size * self.dec_seq_length_)
if self.future_seq_length_ > 0:
loss_fut += this_loss_fut / (batch_size * self.future_seq_length_)
loss_dec = loss_dec / num_batches
loss_fut = loss_fut / num_batches
return loss_dec, loss_fut
def SetBatchSize(self, train_data):
self.num_dims_ = train_data.GetDims()
batch_size = train_data.GetBatchSize()
seq_length = train_data.GetSeqLength()
dec_seq_length = self.model_.dec_seq_length
future_seq_length = self.model_.future_seq_length
assert seq_length == dec_seq_length + future_seq_length
self.batch_size_ = batch_size
self.enc_seq_length_ = seq_length - future_seq_length
self.dec_seq_length_ = dec_seq_length
self.future_seq_length_ = future_seq_length
self.lstm_stack_enc_.SetBatchSize(batch_size, self.enc_seq_length_)
self.v_ = cm.empty((batch_size, seq_length * self.num_dims_))
if dec_seq_length > 0:
self.lstm_stack_dec_.SetBatchSize(batch_size, dec_seq_length)
self.v_dec_ = cm.empty((batch_size, dec_seq_length * self.num_dims_))
self.v_dec_deriv_ = cm.empty((batch_size, dec_seq_length * self.num_dims_))
if future_seq_length > 0:
self.lstm_stack_fut_.SetBatchSize(batch_size, future_seq_length)
self.v_fut_ = cm.empty((batch_size, future_seq_length * self.num_dims_))
self.v_fut_deriv_ = cm.empty((batch_size, future_seq_length * self.num_dims_))
def Save(self, model_file):
sys.stdout.write(' Writing model to %s' % model_file)
f = h5py.File(model_file, 'w')
self.lstm_stack_enc_.Save(f)
self.lstm_stack_dec_.Save(f)
self.lstm_stack_fut_.Save(f)
f.close()
def Display(self, ii, fname):
plt.figure(1)
plt.clf()
plt.subplot(2, 1, 1)
plt.imshow(self.v_.asarray()[:, :1000], interpolation="nearest")
plt.subplot(2, 1, 2)
plt.imshow(self.v_dec_.asarray()[:, :1000], interpolation="nearest")
plt.title('Reconstruction %d' % ii)
plt.draw()
#plt.pause(0.1)
plt.savefig(fname)
def Show(self, data, output_dir=None):
# get random batch from the data and displays the results
self.SetBatchSize(data)
data.Reset()
v_cpu, _ = data.GetBatch()
rand_index = randint(0, v_cpu.shape[0] - 1)
self.v_.overwrite(v_cpu)
self.Fprop()
rec = self.v_dec_.asarray()
fut = self.v_fut_.asarray()
# save or display the reconstructed/future predicted data
if output_dir is None:
output_file = None
else:
output_file = os.path.join(output_dir)
data.DisplayData(v_cpu, rec=rec, fut=fut, case_id=rand_index, output_file=output_file)
def RunAndShow(self, data, output_dir=None, max_dataset_size=0):
self.SetBatchSize(data)
data.Reset()
dataset_size = data.GetDatasetSize()
if max_dataset_size > 0 and dataset_size > max_dataset_size:
dataset_size = max_dataset_size
batch_size = data.GetBatchSize()
num_batches = dataset_size / batch_size
end = False
for ii in xrange(num_batches):
v_cpu, _ = data.GetBatch()
self.v_.overwrite(v_cpu)
self.Fprop()
rec = self.v_dec_.asarray()
fut = self.v_fut_.asarray()
for j in xrange(batch_size):
if j + ii * batch_size >= dataset_size:
end = True
break
if output_dir is None:
output_file = None
else:
output_file = os.path.join(output_dir, "%.6d.pdf" % (j + ii * batch_size))
data.DisplayData(v_cpu, rec=rec, fut=fut, case_id=j, output_file=output_file)
if end:
break
def Train(self, train_data, valid_data=None):
# Timestamp the model that we are training.
st = datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d%H%M%S')
model_file = os.path.join(self.model_.checkpoint_dir, '%s_%s' % (self.model_.name, st))
self.model_.timestamp.append(st)
print 'Model saved at %s.pbtxt' % model_file
WritePbtxt(self.model_, '%s.pbtxt' % model_file)
self.SetBatchSize(train_data)
loss_dec = 0
loss_fut = 0
print_after = self.model_.print_after
validate_after = self.model_.validate_after
validate = validate_after > 0 and valid_data is not None
save_after = self.model_.save_after
save = save_after > 0
display_after = self.model_.display_after
display = display_after > 0
for ii in xrange(1, self.model_.max_iters + 1):
newline = False
sys.stdout.write('\rStep %d' % ii)
sys.stdout.flush()
v_cpu, _ = train_data.GetBatch()
self.v_.overwrite(v_cpu)
self.Fprop(train=True)
# Compute Performance.
this_loss_dec, this_loss_fut = self.GetLoss()
if self.dec_seq_length_ > 0:
loss_dec += this_loss_dec / (self.dec_seq_length_ * self.batch_size_)
if self.future_seq_length_ > 0:
loss_fut += this_loss_fut / (self.future_seq_length_ * self.batch_size_)
if self.binary_data_:
self.ComputeDeriv()
else:
pass # Computing loss requires computing deriv, so ComputeDeriv is already done.
if ii % print_after == 0:
loss_dec /= print_after
loss_fut /= print_after
sys.stdout.write(' Dec %.5f Fut %.5f' % (loss_dec, loss_fut))
loss_dec = 0
loss_fut = 0
newline = True
self.BpropAndOutp()
self.Update()
if display and ii % display_after == 0:
#self.Display(ii, '%s_reconstruction.png' % model_file)
fut = self.v_fut_.asarray() if self.future_seq_length_ > 0 else None
rec = self.v_dec_.asarray() if self.dec_seq_length_ > 0 else None
train_data.DisplayData(v_cpu, rec=rec, fut=fut)
#self.lstm_stack_enc_.Display()
#self.lstm_stack_dec_.Display()
if validate and ii % validate_after == 0:
valid_loss_dec, valid_loss_fut = self.Validate(valid_data)
sys.stdout.write(' VDec %.5f VFut %.5f' % (valid_loss_dec, valid_loss_fut))
newline = True
if save and ii % save_after == 0:
self.Save('%s.h5' % model_file)
if newline:
sys.stdout.write('\n')
sys.stdout.write('\n')
def main():
model = ReadModelProto(sys.argv[1])
lstm_autoencoder = LSTMCombo(model)
train_data = ChooseDataHandler(ReadDataProto(sys.argv[2]))
valid_data = ChooseDataHandler(ReadDataProto(sys.argv[3]))
lstm_autoencoder.Train(train_data, valid_data)
if __name__ == '__main__':
# Set the board
board_id = int(sys.argv[4])
board = LockGPU(board=board_id)
print 'Using board', board
cm.CUDAMatrix.init_random(42)
np.random.seed(42)
main()