forked from phishman3579/java-algorithms-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinarySearchTree.java
800 lines (719 loc) · 25.1 KB
/
BinarySearchTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
package com.jwetherell.algorithms.data_structures;
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Queue;
import java.util.Set;
import com.jwetherell.algorithms.data_structures.interfaces.ITree;
/**
* A binary search tree (BST), which may sometimes also be called an ordered or
* sorted binary tree, is a node-based binary tree data structure which has the
* following properties: 1) The left subtree of a node contains only nodes with
* keys less than the node's key. 2) The right subtree of a node contains only
* nodes with keys greater than the node's key. 3) Both the left and right
* subtrees must also be binary search trees.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary Search Tree (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
@SuppressWarnings("unchecked")
public class BinarySearchTree<T extends Comparable<T>> implements ITree<T> {
private int modifications = 0;
protected static final Random RANDOM = new Random();
protected Node<T> root = null;
protected int size = 0;
protected INodeCreator<T> creator = null;
public enum DepthFirstSearchOrder {
inOrder, preOrder, postOrder
}
/**
* Default constructor.
*/
public BinarySearchTree() {
this.creator = new INodeCreator<T>() {
/**
* {@inheritDoc}
*/
@Override
public Node<T> createNewNode(Node<T> parent, T id) {
return (new Node<T>(parent, id));
}
};
}
/**
* Constructor with external Node creator.
*/
public BinarySearchTree(INodeCreator<T> creator) {
this.creator = creator;
}
/**
* {@inheritDoc}
*/
@Override
public boolean add(T value) {
Node<T> nodeAdded = this.addValue(value);
return (nodeAdded != null);
}
/**
* Add value to the tree and return the Node that was added. Tree can
* contain multiple equal values.
*
* @param value
* T to add to the tree.
* @return Node<T> which was added to the tree.
*/
protected Node<T> addValue(T value) {
Node<T> newNode = this.creator.createNewNode(null, value);
// If root is null, assign
if (root == null) {
root = newNode;
size++;
return newNode;
}
Node<T> node = root;
while (node != null) {
if (newNode.id.compareTo(node.id) <= 0) {
// Less than or equal to goes left
if (node.lesser == null) {
// New left node
node.lesser = newNode;
newNode.parent = node;
size++;
return newNode;
}
node = node.lesser;
} else {
// Greater than goes right
if (node.greater == null) {
// New right node
node.greater = newNode;
newNode.parent = node;
size++;
return newNode;
}
node = node.greater;
}
}
return newNode;
}
/**
* {@inheritDoc}
*/
@Override
public boolean contains(T value) {
Node<T> node = getNode(value);
return (node != null);
}
/**
* Locate T in the tree.
*
* @param value
* T to locate in the tree.
* @return Node<T> representing first reference of value in tree or NULL if
* not found.
*/
protected Node<T> getNode(T value) {
Node<T> node = root;
while (node != null && node.id != null) {
if (value.compareTo(node.id) < 0) {
node = node.lesser;
} else if (value.compareTo(node.id) > 0) {
node = node.greater;
} else if (value.compareTo(node.id) == 0) {
return node;
}
}
return null;
}
/**
* Rotate tree left at sub-tree rooted at node.
*
* @param node
* Root of tree to rotate left.
*/
protected void rotateLeft(Node<T> node) {
Node<T> parent = node.parent;
Node<T> greater = node.greater;
Node<T> lesser = greater.lesser;
greater.lesser = node;
node.parent = greater;
node.greater = lesser;
if (lesser != null)
lesser.parent = node;
if (parent!=null) {
if (node == parent.lesser) {
parent.lesser = greater;
} else if (node == parent.greater) {
parent.greater = greater;
} else {
throw new RuntimeException("Yikes! I'm not related to my parent. " + node.toString());
}
greater.parent = parent;
} else {
root = greater;
root.parent = null;
}
}
/**
* Rotate tree right at sub-tree rooted at node.
*
* @param node
* Root of tree to rotate right.
*/
protected void rotateRight(Node<T> node) {
Node<T> parent = node.parent;
Node<T> lesser = node.lesser;
Node<T> greater = lesser.greater;
lesser.greater = node;
node.parent = lesser;
node.lesser = greater;
if (greater != null)
greater.parent = node;
if (parent!=null) {
if (node == parent.lesser) {
parent.lesser = lesser;
} else if (node == parent.greater) {
parent.greater = lesser;
} else {
throw new RuntimeException("Yikes! I'm not related to my parent. " + node.toString());
}
lesser.parent = parent;
} else {
root = lesser;
root.parent = null;
}
}
/**
* Get greatest node in sub-tree rooted at startingNode. The search does not
* include startingNode in it's results.
*
* @param startingNode
* Root of tree to search.
* @return Node<T> which represents the greatest node in the startingNode
* sub-tree or NULL if startingNode has no greater children.
*/
protected Node<T> getGreatest(Node<T> startingNode) {
if (startingNode == null)
return null;
Node<T> greater = startingNode.greater;
while (greater != null && greater.id != null) {
Node<T> node = greater.greater;
if (node != null && node.id != null)
greater = node;
else
break;
}
return greater;
}
/**
* Get least node in sub-tree rooted at startingNode. The search does not
* include startingNode in it's results.
*
* @param startingNode
* Root of tree to search.
* @return Node<T> which represents the least node in the startingNode
* sub-tree or NULL if startingNode has no lesser children.
*/
protected Node<T> getLeast(Node<T> startingNode) {
if (startingNode == null)
return null;
Node<T> lesser = startingNode.lesser;
while (lesser != null && lesser.id != null) {
Node<T> node = lesser.lesser;
if (node != null && node.id != null)
lesser = node;
else
break;
}
return lesser;
}
/**
* {@inheritDoc}
*/
@Override
public T remove(T value) {
Node<T> nodeToRemove = this.removeValue(value);
return ((nodeToRemove!=null)?nodeToRemove.id:null);
}
/**
* Remove first occurrence of value in the tree.
*
* @param value
* T to remove from the tree.
* @return Node<T> which was removed from the tree.
*/
protected Node<T> removeValue(T value) {
Node<T> nodeToRemoved = this.getNode(value);
if (nodeToRemoved != null)
nodeToRemoved = removeNode(nodeToRemoved);
return nodeToRemoved;
}
/**
* Remove the node using a replacement
*
* @param nodeToRemoved
* Node<T> to remove from the tree.
* @return nodeRemove
* Node<T> removed from the tree, it can be different
* then the parameter in some cases.
*/
protected Node<T> removeNode(Node<T> nodeToRemoved) {
if (nodeToRemoved != null) {
Node<T> replacementNode = this.getReplacementNode(nodeToRemoved);
replaceNodeWithNode(nodeToRemoved, replacementNode);
}
return nodeToRemoved;
}
/**
* Get the proper replacement node according to the binary search tree
* algorithm from the tree.
*
* @param nodeToRemoved
* Node<T> to find a replacement for.
* @return Node<T> which can be used to replace nodeToRemoved. nodeToRemoved
* should NOT be NULL.
*/
protected Node<T> getReplacementNode(Node<T> nodeToRemoved) {
Node<T> replacement = null;
if (nodeToRemoved.greater != null && nodeToRemoved.lesser != null) {
// Two children.
// Add some randomness to deletions, so we don't always use the
// greatest/least on deletion
if (modifications % 2 != 0) {
replacement = this.getGreatest(nodeToRemoved.lesser);
if (replacement == null)
replacement = nodeToRemoved.lesser;
} else {
replacement = this.getLeast(nodeToRemoved.greater);
if (replacement == null)
replacement = nodeToRemoved.greater;
}
modifications++;
} else if (nodeToRemoved.lesser != null && nodeToRemoved.greater == null) {
// Using the less subtree
replacement = nodeToRemoved.lesser;
} else if (nodeToRemoved.greater != null && nodeToRemoved.lesser == null) {
// Using the greater subtree (there is no lesser subtree, no refactoring)
replacement = nodeToRemoved.greater;
}
return replacement;
}
/**
* Replace nodeToRemoved with replacementNode in the tree.
*
* @param nodeToRemoved
* Node<T> to remove replace in the tree. nodeToRemoved should
* NOT be NULL.
* @param replacementNode
* Node<T> to replace nodeToRemoved in the tree. replacementNode
* can be NULL.
*/
protected void replaceNodeWithNode(Node<T> nodeToRemoved, Node<T> replacementNode) {
if (replacementNode != null) {
// Save for later
Node<T> replacementNodeLesser = replacementNode.lesser;
Node<T> replacementNodeGreater = replacementNode.greater;
// Replace replacementNode's branches with nodeToRemove's branches
Node<T> nodeToRemoveLesser = nodeToRemoved.lesser;
if (nodeToRemoveLesser != null && nodeToRemoveLesser != replacementNode) {
replacementNode.lesser = nodeToRemoveLesser;
nodeToRemoveLesser.parent = replacementNode;
}
Node<T> nodeToRemoveGreater = nodeToRemoved.greater;
if (nodeToRemoveGreater != null && nodeToRemoveGreater != replacementNode) {
replacementNode.greater = nodeToRemoveGreater;
nodeToRemoveGreater.parent = replacementNode;
}
// Remove link from replacementNode's parent to replacement
Node<T> replacementParent = replacementNode.parent;
if (replacementParent != null && replacementParent != nodeToRemoved) {
Node<T> replacementParentLesser = replacementParent.lesser;
Node<T> replacementParentGreater = replacementParent.greater;
if (replacementParentLesser != null && replacementParentLesser == replacementNode) {
replacementParent.lesser = replacementNodeGreater;
if (replacementNodeGreater != null)
replacementNodeGreater.parent = replacementParent;
} else if (replacementParentGreater != null && replacementParentGreater == replacementNode) {
replacementParent.greater = replacementNodeLesser;
if (replacementNodeLesser != null)
replacementNodeLesser.parent = replacementParent;
}
}
}
// Update the link in the tree from the nodeToRemoved to the
// replacementNode
Node<T> parent = nodeToRemoved.parent;
if (parent == null) {
// Replacing the root node
root = replacementNode;
if (root != null)
root.parent = null;
} else if (parent.lesser != null && (parent.lesser.id.compareTo(nodeToRemoved.id) == 0)) {
parent.lesser = replacementNode;
if (replacementNode != null)
replacementNode.parent = parent;
} else if (parent.greater != null && (parent.greater.id.compareTo(nodeToRemoved.id) == 0)) {
parent.greater = replacementNode;
if (replacementNode != null)
replacementNode.parent = parent;
}
size--;
}
/**
* {@inheritDoc}
*/
@Override
public void clear() {
root = null;
size = 0;
}
/**
* {@inheritDoc}
*/
@Override
public int size() {
return size;
}
/**
* {@inheritDoc}
*/
@Override
public boolean validate() {
if (root == null) return true;
return validateNode(root);
}
/**
* Validate the node for all Binary Search Tree invariants.
*
* @param node
* Node<T> to validate in the tree. node should NOT be NULL.
* @return True if the node is valid.
*/
protected boolean validateNode(Node<T> node) {
Node<T> lesser = node.lesser;
Node<T> greater = node.greater;
boolean lesserCheck = true;
if (lesser != null && lesser.id != null) {
lesserCheck = (lesser.id.compareTo(node.id) <= 0);
if (lesserCheck)
lesserCheck = validateNode(lesser);
}
if (!lesserCheck)
return false;
boolean greaterCheck = true;
if (greater != null && greater.id != null) {
greaterCheck = (greater.id.compareTo(node.id) > 0);
if (greaterCheck)
greaterCheck = validateNode(greater);
}
return greaterCheck;
}
/**
* Get an array representation of the tree in breath first search order.
*
* @return breath first search sorted array representing the tree.
*/
public T[] getBFS() {
return getBFS(this.root, this.size);
}
/**
* Get an array representation of the tree in breath first search order.
*
* @param start rooted node
* @param size of tree rooted at start
*
* @return breath first search sorted array representing the tree.
*/
public static <T extends Comparable<T>> T[] getBFS(Node<T> start, int size) {
final Queue<Node<T>> queue = new ArrayDeque<Node<T>>();
final T[] values = (T[])Array.newInstance(start.id.getClass(), size);
int count = 0;
Node<T> node = start;
while (node != null) {
values[count++] = node.id;
if (node.lesser != null)
queue.add(node.lesser);
if (node.greater != null)
queue.add(node.greater);
if (!queue.isEmpty())
node = queue.remove();
else
node = null;
}
return values;
}
/**
* Get an array representation of the tree in level order.
*
* @return level order sorted array representing the tree.
*/
public T[] getLevelOrder() {
return getBFS();
}
/**
* Get an array representation of the tree in-order.
*
* @param order of search
*
* @return order sorted array representing the tree.
*/
public T[] getDFS(DepthFirstSearchOrder order) {
return getDFS(order, this.root, this.size);
}
/**
* Get an array representation of the tree in-order.
*
* @param order of search
* @param start rooted node
* @param size of tree rooted at start
*
* @return order sorted array representing the tree.
*/
public static <T extends Comparable<T>> T[] getDFS(DepthFirstSearchOrder order, Node<T> start, int size) {
final Set<Node<T>> added = new HashSet<Node<T>>(2);
final T[] nodes = (T[])Array.newInstance(start.id.getClass(), size);
int index = 0;
Node<T> node = start;
while (index < size && node != null) {
Node<T> parent = node.parent;
Node<T> lesser = (node.lesser != null && !added.contains(node.lesser)) ? node.lesser : null;
Node<T> greater = (node.greater != null && !added.contains(node.greater)) ? node.greater : null;
if (parent == null && lesser == null && greater == null) {
if (!added.contains(node))
nodes[index++] = node.id;
break;
}
if (order == DepthFirstSearchOrder.inOrder) {
if (lesser != null) {
node = lesser;
} else {
if (!added.contains(node)) {
nodes[index++] = node.id;
added.add(node);
}
if (greater != null) {
node = greater;
} else if (added.contains(node)) {
node = parent;
} else {
// We should not get here. Stop the loop!
node = null;
}
}
} else if (order == DepthFirstSearchOrder.preOrder) {
if (!added.contains(node)) {
nodes[index++] = node.id;
added.add(node);
}
if (lesser != null) {
node = lesser;
} else if (greater != null) {
node = greater;
} else if (added.contains(node)) {
node = parent;
} else {
// We should not get here. Stop the loop!
node = null;
}
} else {
// post-Order
if (lesser != null) {
node = lesser;
} else {
if (greater != null) {
node = greater;
} else {
// lesser==null && greater==null
nodes[index++] = node.id;
added.add(node);
node = parent;
}
}
}
}
return nodes;
}
/**
* Get an array representation of the tree in sorted order.
*
* @return sorted array representing the tree.
*/
public T[] getSorted() {
// Depth first search to traverse the tree in-order sorted.
return getDFS(DepthFirstSearchOrder.inOrder);
}
/**
* {@inheritDoc}
*/
@Override
public java.util.Collection<T> toCollection() {
return (new JavaCompatibleBinarySearchTree<T>(this));
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return TreePrinter.getString(this);
}
protected static class Node<T extends Comparable<T>> {
protected T id = null;
protected Node<T> parent = null;
protected Node<T> lesser = null;
protected Node<T> greater = null;
/**
* Node constructor.
*
* @param parent
* Parent link in tree. parent can be NULL.
* @param id
* T representing the node in the tree.
*/
protected Node(Node<T> parent, T id) {
this.parent = parent;
this.id = id;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return "id=" + id + " parent=" + ((parent != null) ? parent.id : "NULL") + " lesser="
+ ((lesser != null) ? lesser.id : "NULL") + " greater=" + ((greater != null) ? greater.id : "NULL");
}
}
protected static interface INodeCreator<T extends Comparable<T>> {
/**
* Create a new Node with the following parameters.
*
* @param parent
* of this node.
* @param id
* of this node.
* @return new Node
*/
public Node<T> createNewNode(Node<T> parent, T id);
}
protected static class TreePrinter {
public static <T extends Comparable<T>> String getString(BinarySearchTree<T> tree) {
if (tree.root == null)
return "Tree has no nodes.";
return getString(tree.root, "", true);
}
private static <T extends Comparable<T>> String getString(Node<T> node, String prefix, boolean isTail) {
StringBuilder builder = new StringBuilder();
if (node.parent != null) {
String side = "left";
if (node.equals(node.parent.greater))
side = "right";
builder.append(prefix + (isTail ? "└── " : "├── ") + "(" + side + ") " + node.id + "\n");
} else {
builder.append(prefix + (isTail ? "└── " : "├── ") + node.id + "\n");
}
List<Node<T>> children = null;
if (node.lesser != null || node.greater != null) {
children = new ArrayList<Node<T>>(2);
if (node.lesser != null)
children.add(node.lesser);
if (node.greater != null)
children.add(node.greater);
}
if (children != null) {
for (int i = 0; i < children.size() - 1; i++) {
builder.append(getString(children.get(i), prefix + (isTail ? " " : "│ "), false));
}
if (children.size() >= 1) {
builder.append(getString(children.get(children.size() - 1), prefix + (isTail ? " " : "│ "), true));
}
}
return builder.toString();
}
}
private static class JavaCompatibleBinarySearchTree<T extends Comparable<T>> extends java.util.AbstractCollection<T> {
protected BinarySearchTree<T> tree = null;
public JavaCompatibleBinarySearchTree(BinarySearchTree<T> tree) {
this.tree = tree;
}
/**
* {@inheritDoc}
*/
@Override
public boolean add(T value) {
return tree.add(value);
}
/**
* {@inheritDoc}
*/
@Override
public boolean remove(Object value) {
return (tree.remove((T)value)!=null);
}
/**
* {@inheritDoc}
*/
@Override
public boolean contains(Object value) {
return tree.contains((T)value);
}
/**
* {@inheritDoc}
*/
@Override
public int size() {
return tree.size();
}
/**
* {@inheritDoc}
*/
@Override
public java.util.Iterator<T> iterator() {
return (new BinarySearchTreeIterator<T>(this.tree));
}
private static class BinarySearchTreeIterator<C extends Comparable<C>> implements java.util.Iterator<C> {
private BinarySearchTree<C> tree = null;
private BinarySearchTree.Node<C> last = null;
private Deque<BinarySearchTree.Node<C>> toVisit = new ArrayDeque<BinarySearchTree.Node<C>>();
protected BinarySearchTreeIterator(BinarySearchTree<C> tree) {
this.tree = tree;
if (tree.root!=null) toVisit.add(tree.root);
}
/**
* {@inheritDoc}
*/
@Override
public boolean hasNext() {
if (toVisit.size()>0) return true;
return false;
}
/**
* {@inheritDoc}
*/
@Override
public C next() {
while (toVisit.size()>0) {
// Go thru the current nodes
BinarySearchTree.Node<C> n = toVisit.pop();
// Add non-null children
if (n.lesser!=null) toVisit.add(n.lesser);
if (n.greater!=null) toVisit.add(n.greater);
// Update last node (used in remove method)
last = n;
return n.id;
}
return null;
}
/**
* {@inheritDoc}
*/
@Override
public void remove() {
tree.removeNode(last);
}
}
}
}