-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathstylegan_two.py
631 lines (419 loc) · 17.9 KB
/
stylegan_two.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
from PIL import Image
from math import floor, log2
import numpy as np
import time
from functools import partial
from random import random
import os
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.initializers import *
import tensorflow as tf
import tensorflow.keras.backend as K
from datagen import dataGenerator, printProgressBar
from conv_mod import *
im_size = 64
latent_size = 512
BATCH_SIZE = 6
directory = "Pokemon2"
cha = 12
n_layers = int(log2(im_size) - 1)
mixed_prob = 0.9
def noise(n):
return np.random.normal(0.0, 1.0, size = [n, latent_size]).astype('float32')
def noiseList(n):
return [noise(n)] * n_layers
def mixedList(n):
tt = int(random() * n_layers)
p1 = [noise(n)] * tt
p2 = [noise(n)] * (n_layers - tt)
return p1 + [] + p2
def nImage(n):
return np.random.uniform(0.0, 1.0, size = [n, im_size, im_size, 1]).astype('float32')
#Loss functions
def gradient_penalty(samples, output, weight):
gradients = K.gradients(output, samples)[0]
gradients_sqr = K.square(gradients)
gradient_penalty = K.sum(gradients_sqr,
axis=np.arange(1, len(gradients_sqr.shape)))
# (weight / 2) * ||grad||^2
# Penalize the gradient norm
return K.mean(gradient_penalty) * weight
def hinge_d(y_true, y_pred):
return K.mean(K.relu(1.0 + (y_true * y_pred)))
def w_loss(y_true, y_pred):
return K.mean(y_true * y_pred)
#Lambdas
def crop_to_fit(x):
height = x[1].shape[1]
width = x[1].shape[2]
return x[0][:, :height, :width, :]
def upsample(x):
return K.resize_images(x,2,2,"channels_last",interpolation='bilinear')
def make_uts(s1 = 4, s2 = im_size):
ss = int(s2 / s1)
def upsample_to_size(x, y = ss):
x = K.resize_images(x, y, y, "channels_last",interpolation='bilinear')
return x
return upsample_to_size
#Blocks
def g_block(inp, istyle, inoise, fil, u = True):
if u:
#Custom upsampling because of clone_model issue
out = UpSampling2D(interpolation = 'bilinear')(inp)
else:
out = Activation('linear')(inp)
rgb_style = Dense(fil, kernel_initializer = VarianceScaling(200/out.shape[2]))(istyle)
style = Dense(inp.shape[-1], kernel_initializer = 'he_uniform')(istyle)
delta = Lambda(crop_to_fit)([inoise, out])
d = Dense(fil, kernel_initializer = 'zeros')(delta)
out = Conv2DMod(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_uniform')([out, style])
out = add([out, d])
out = LeakyReLU(0.2)(out)
style = Dense(fil, kernel_initializer = 'he_uniform')(istyle)
d = Dense(fil, kernel_initializer = 'zeros')(delta)
out = Conv2DMod(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_uniform')([out, style])
out = add([out, d])
out = LeakyReLU(0.2)(out)
return out, to_rgb(out, rgb_style)
def d_block(inp, fil, p = True):
res = Conv2D(fil, 1, kernel_initializer = 'he_uniform')(inp)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_uniform')(inp)
out = LeakyReLU(0.2)(out)
out = Conv2D(filters = fil, kernel_size = 3, padding = 'same', kernel_initializer = 'he_uniform')(out)
out = LeakyReLU(0.2)(out)
out = add([res, out])
if p:
out = AveragePooling2D()(out)
return out
def to_rgb(inp, style):
size = inp.shape[2]
x = Conv2DMod(3, 1, kernel_initializer = VarianceScaling(200/size), demod = False)([inp, style])
return Lambda(make_uts(size, im_size), output_shape=[None, im_size, im_size, None])(x)
def from_rgb(inp, conc = None):
fil = int(im_size * 4 / inp.shape[2])
z = AveragePooling2D()(inp)
x = Conv2D(fil, 1, kernel_initializer = 'he_uniform')(z)
if conc is not None:
x = concatenate([x, conc])
return x, z
class GAN(object):
def __init__(self, steps = 1, lr = 0.0001, decay = 0.00001):
#Models
self.D = None
self.S = None
self.G = None
self.GE = None
self.SE = None
self.DM = None
self.AM = None
#Config
self.LR = lr
self.steps = steps
self.beta = 0.999
#Init Models
self.discriminator()
self.generator()
self.GMO = Adam(lr = self.LR, beta_1 = 0, beta_2 = 0.999)
self.DMO = Adam(lr = self.LR, beta_1 = 0, beta_2 = 0.999)
self.GE = clone_model(self.G)
self.GE.set_weights(self.G.get_weights())
self.SE = clone_model(self.S)
self.SE.set_weights(self.S.get_weights())
def discriminator(self):
if self.D:
return self.D
inp = Input(shape = [im_size, im_size, 3])
x = d_block(inp, 1 * cha) #128
x = d_block(x, 2 * cha) #64
x = d_block(x, 4 * cha) #32
x = d_block(x, 8 * cha) #16
x = d_block(x, 16 * cha, p = False) #8
#x = d_block(x, 16 * cha) #4
#x = d_block(x, 32 * cha, p = False) #4
x = Flatten()(x)
x = Dense(1, kernel_initializer = 'he_uniform')(x)
self.D = Model(inputs = inp, outputs = x)
return self.D
def generator(self):
if self.G:
return self.G
# === Style Mapping ===
self.S = Sequential()
self.S.add(Dense(512, input_shape = [latent_size]))
self.S.add(LeakyReLU(0.2))
self.S.add(Dense(512))
self.S.add(LeakyReLU(0.2))
self.S.add(Dense(512))
self.S.add(LeakyReLU(0.2))
self.S.add(Dense(512))
self.S.add(LeakyReLU(0.2))
# === Generator ===
#Inputs
inp_style = []
for i in range(n_layers):
inp_style.append(Input([512]))
inp_noise = Input([im_size, im_size, 1])
#Latent
x = Lambda(lambda x: x[:, :1] * 0 + 1)(inp_style[0])
outs = []
#Actual Model
x = Dense(4*4*4*cha, activation = 'relu', kernel_initializer = 'random_normal')(x)
x = Reshape([4, 4, 4*cha])(x)
x, r = g_block(x, inp_style[0], inp_noise, 32 * cha, u = False) #4
outs.append(r)
#x, r = g_block(x, inp_style[1], inp_noise, 16 * cha) #8
#outs.append(r)
x, r = g_block(x, inp_style[1], inp_noise, 8 * cha) #16
outs.append(r)
#x, r = g_block(x, inp_style[3], inp_noise, 6 * cha) #32
#outs.append(r)
x, r = g_block(x, inp_style[2], inp_noise, 4 * cha) #64
outs.append(r)
x, r = g_block(x, inp_style[3], inp_noise, 2 * cha) #128
outs.append(r)
x, r = g_block(x, inp_style[4], inp_noise, 1 * cha) #256
outs.append(r)
x = add(outs)
x = Lambda(lambda y: y/2 + 0.5)(x) #Use values centered around 0, but normalize to [0, 1], providing better initialization
self.G = Model(inputs = inp_style + [inp_noise], outputs = x)
return self.G, self.S
def GenModel(self):
#Generator Model for Evaluation
inp_style = []
style = []
for i in range(n_layers):
inp_style.append(Input([latent_size]))
style.append(self.S(inp_style[-1]))
inp_noise = Input([im_size, im_size, 1])
gf = self.G(style + [inp_noise])
self.GM = Model(inputs = inp_style + [inp_noise], outputs = gf)
return self.GM
def GenModelA(self):
#Parameter Averaged Generator Model
inp_style = []
style = []
for i in range(n_layers):
inp_style.append(Input([latent_size]))
style.append(self.SE(inp_style[-1]))
inp_noise = Input([im_size, im_size, 1])
gf = self.GE(style + [inp_noise])
self.GMA = Model(inputs = inp_style + [inp_noise], outputs = gf)
return self.GMA
def EMA(self):
#Parameter Averaging
for i in range(len(self.G.layers)):
up_weight = self.G.layers[i].get_weights()
old_weight = self.GE.layers[i].get_weights()
new_weight = []
for j in range(len(up_weight)):
new_weight.append(old_weight[j] * self.beta + (1-self.beta) * up_weight[j])
self.GE.layers[i].set_weights(new_weight)
for i in range(len(self.S.layers)):
up_weight = self.S.layers[i].get_weights()
old_weight = self.SE.layers[i].get_weights()
new_weight = []
for j in range(len(up_weight)):
new_weight.append(old_weight[j] * self.beta + (1-self.beta) * up_weight[j])
self.SE.layers[i].set_weights(new_weight)
def MAinit(self):
#Reset Parameter Averaging
self.GE.set_weights(self.G.get_weights())
self.SE.set_weights(self.S.get_weights())
class StyleGAN(object):
def __init__(self, steps = 1, lr = 0.0001, decay = 0.00001, silent = True):
#Init GAN and Eval Models
self.GAN = GAN(steps = steps, lr = lr, decay = decay)
self.GAN.GenModel()
self.GAN.GenModelA()
self.GAN.G.summary()
#Data generator (my own code, not from TF 2.0)
self.im = dataGenerator(directory, im_size, flip = True)
#Set up variables
self.lastblip = time.clock()
self.silent = silent
self.ones = np.ones((BATCH_SIZE, 1), dtype=np.float32)
self.zeros = np.zeros((BATCH_SIZE, 1), dtype=np.float32)
self.nones = -self.ones
self.evaluate("nit")
self.pl_mean = 0
self.av = np.zeros([44])
def train(self):
#Train Alternating
if random() < mixed_prob:
style = mixedList(BATCH_SIZE)
else:
style = noiseList(BATCH_SIZE)
#Apply penalties every 16 steps
apply_gradient_penalty = self.GAN.steps % 2 == 0 or self.GAN.steps < 10000
apply_path_penalty = self.GAN.steps % 16 == 0
a, b, c, d = self.train_step(self.im.get_batch(BATCH_SIZE).astype('float32'), style, nImage(BATCH_SIZE), apply_gradient_penalty, apply_path_penalty)
#Adjust path length penalty mean
#d = pl_mean when no penalty is applied
if self.pl_mean == 0:
self.pl_mean = np.mean(d)
self.pl_mean = 0.99*self.pl_mean + 0.01*np.mean(d)
if self.GAN.steps % 10 == 0 and self.GAN.steps > 20000:
self.GAN.EMA()
if self.GAN.steps <= 25000 and self.GAN.steps % 1000 == 2:
self.GAN.MAinit()
if np.isnan(a):
print("NaN Value Error.")
exit()
#Print info
if self.GAN.steps % 100 == 0 and not self.silent:
print("\n\nRound " + str(self.GAN.steps) + ":")
print("D:", np.array(a))
print("G:", np.array(b))
print("PL:", self.pl_mean)
s = round((time.clock() - self.lastblip), 4)
self.lastblip = time.clock()
steps_per_second = 100 / s
steps_per_minute = steps_per_second * 60
steps_per_hour = steps_per_minute * 60
print("Steps/Second: " + str(round(steps_per_second, 2)))
print("Steps/Hour: " + str(round(steps_per_hour)))
min1k = floor(1000/steps_per_minute)
sec1k = floor(1000/steps_per_second) % 60
print("1k Steps: " + str(min1k) + ":" + str(sec1k))
steps_left = 200000 - self.GAN.steps + 1e-7
hours_left = steps_left // steps_per_hour
minutes_left = (steps_left // steps_per_minute) % 60
print("Til Completion: " + str(int(hours_left)) + "h" + str(int(minutes_left)) + "m")
print()
#Save Model
if self.GAN.steps % 500 == 0:
self.save(floor(self.GAN.steps / 10000))
if self.GAN.steps % 1000 == 0 or (self.GAN.steps % 100 == 0 and self.GAN.steps < 2500):
self.evaluate(floor(self.GAN.steps / 1000))
printProgressBar(self.GAN.steps % 100, 99, decimals = 0)
self.GAN.steps = self.GAN.steps + 1
@tf.function
def train_step(self, images, style, noise, perform_gp = True, perform_pl = False):
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
#Get style information
w_space = []
pl_lengths = self.pl_mean
for i in range(len(style)):
w_space.append(self.GAN.S(style[i]))
#Generate images
generated_images = self.GAN.G(w_space + [noise])
#Discriminate
real_output = self.GAN.D(images, training=True)
fake_output = self.GAN.D(generated_images, training=True)
#Hinge loss function
gen_loss = K.mean(fake_output)
divergence = K.mean(K.relu(1 + real_output) + K.relu(1 - fake_output))
disc_loss = divergence
if perform_gp:
#R1 gradient penalty
disc_loss += gradient_penalty(images, real_output, 10)
if perform_pl:
#Slightly adjust W space
w_space_2 = []
for i in range(len(style)):
std = 0.1 / (K.std(w_space[i], axis = 0, keepdims = True) + 1e-8)
w_space_2.append(w_space[i] + K.random_normal(tf.shape(w_space[i])) / (std + 1e-8))
#Generate from slightly adjusted W space
pl_images = self.GAN.G(w_space_2 + [noise])
#Get distance after adjustment (path length)
delta_g = K.mean(K.square(pl_images - generated_images), axis = [1, 2, 3])
pl_lengths = delta_g
if self.pl_mean > 0:
gen_loss += K.mean(K.square(pl_lengths - self.pl_mean))
#Get gradients for respective areas
gradients_of_generator = gen_tape.gradient(gen_loss, self.GAN.GM.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, self.GAN.D.trainable_variables)
#Apply gradients
self.GAN.GMO.apply_gradients(zip(gradients_of_generator, self.GAN.GM.trainable_variables))
self.GAN.DMO.apply_gradients(zip(gradients_of_discriminator, self.GAN.D.trainable_variables))
return disc_loss, gen_loss, divergence, pl_lengths
def evaluate(self, num = 0):
n1 = noiseList(64)
n2 = nImage(64)
generated_images = self.GAN.GM.predict(n1 + [n2], batch_size = BATCH_SIZE)
r = []
for i in range(0, 64, 8): r.append(np.concatenate(generated_images[i:i+8], axis = 1))
c1 = np.concatenate(r, axis = 0)
c1 = np.clip(c1, 0.0, 1.0)
x = Image.fromarray(np.uint8(c1*255))
x.save("Results/i"+str(num)+".png")
# Moving Average
generated_images = self.GAN.GMA.predict(n1 + [n2], batch_size = BATCH_SIZE)
r = []
for i in range(0, 64, 8): r.append(np.concatenate(generated_images[i:i+8], axis = 1))
c1 = np.concatenate(r, axis = 0)
c1 = np.clip(c1, 0.0, 1.0)
x = Image.fromarray(np.uint8(c1*255))
x.save("Results/i"+str(num)+"-ema.png")
#Mixing Regularities
nn = noise(8)
n1 = np.tile(nn, (8, 1))
n2 = np.repeat(nn, 8, axis = 0)
tt = int(n_layers / 2)
p1 = [n1] * tt
p2 = [n2] * (n_layers - tt)
latent = p1 + [] + p2
generated_images = self.GAN.GMA.predict(latent + [nImage(64)], batch_size = BATCH_SIZE)
r = []
for i in range(0, 64, 8): r.append(np.concatenate(generated_images[i:i+8], axis = 0))
c1 = np.concatenate(r, axis = 1)
c1 = np.clip(c1, 0.0, 1.0)
x = Image.fromarray(np.uint8(c1*255))
x.save("Results/i"+str(num)+"-mr.png")
def generateTruncated(self, style, noi = np.zeros([44]), trunc = 0.5, outImage = False, num = 0):
#Get W's center of mass
if self.av.shape[0] == 44: #44 is an arbitrary value
print("Approximating W center of mass")
self.av = np.mean(self.GAN.S.predict(noise(2000), batch_size = 64), axis = 0)
self.av = np.expand_dims(self.av, axis = 0)
if noi.shape[0] == 44:
noi = nImage(64)
w_space = []
for i in range(len(style)):
tempStyle = self.GAN.S.predict(style[i])
tempStyle = trunc * (tempStyle - self.av) + self.av
w_space.append(tempStyle)
generated_images = self.GAN.GE.predict(w_space + [noi], batch_size = BATCH_SIZE)
if outImage:
r = []
for i in range(0, 64, 8):
r.append(np.concatenate(generated_images[i:i+8], axis = 0))
c1 = np.concatenate(r, axis = 1)
c1 = np.clip(c1, 0.0, 1.0)
x = Image.fromarray(np.uint8(c1*255))
x.save("Results/t"+str(num)+".png")
return generated_images
def saveModel(self, model, name, num):
json = model.to_json()
with open("Models/"+name+".json", "w") as json_file:
json_file.write(json)
model.save_weights("Models/"+name+"_"+str(num)+".h5")
def loadModel(self, name, num):
file = open("Models/"+name+".json", 'r')
json = file.read()
file.close()
mod = model_from_json(json, custom_objects = {'Conv2DMod': Conv2DMod})
mod.load_weights("Models/"+name+"_"+str(num)+".h5")
return mod
def save(self, num): #Save JSON and Weights into /Models/
self.saveModel(self.GAN.S, "sty", num)
self.saveModel(self.GAN.G, "gen", num)
self.saveModel(self.GAN.D, "dis", num)
self.saveModel(self.GAN.GE, "genMA", num)
self.saveModel(self.GAN.SE, "styMA", num)
def load(self, num): #Load JSON and Weights from /Models/
#Load Models
self.GAN.D = self.loadModel("dis", num)
self.GAN.S = self.loadModel("sty", num)
self.GAN.G = self.loadModel("gen", num)
self.GAN.GE = self.loadModel("genMA", num)
self.GAN.SE = self.loadModel("styMA", num)
self.GAN.GenModel()
self.GAN.GenModelA()
if __name__ == "__main__":
model = StyleGAN(lr = 0.0001, silent = False)
model.GAN.steps = 1
while model.GAN.steps < 1000001:
model.train()