Skip to content

Latest commit

 

History

History
539 lines (469 loc) · 17.8 KB

File metadata and controls

539 lines (469 loc) · 17.8 KB

Triton Server Trace

Triton includes that capability to generate a detailed trace for individual inference requests. Tracing is enable by command-line arguments when running the tritonserver executable.

--trace-config command line option in Triton can be used to specify global and trace mode specific config setting. The format of this flag is --trace-config <mode>,<setting>=<value>, where <mode> is either triton or opentelemetry. By default, the trace mode is set to triton, and the server will use Triton's trace APIs. For opentelemetry mode, the server will use the OpenTelemetry's APIs to generate, collect and export traces for individual inference requests.

To specify global trace settings (level, rate, count, or mode), the format is --trace-config <setting>=<value>.

An example usage, which invokes Triton's trace APIs:

$ tritonserver \
    --trace-config triton,file=/tmp/trace.json \
    --trace-config triton,log-frequency=50 \
    --trace-config rate=100 \
    --trace-config level=TIMESTAMPS \
    --trace-config count=100 ...

Trace Settings

Global Settings

The following table shows available global trace settings to pass to --trace-config

Setting Default Value Description
rate 1000 Specifies the sampling rate. The same as deprecated --trace-rate.
For example, a value of 1000 specifies that every 1000-th inference
request will be traced.
level OFF Indicates the level of trace detail that should be collected and
may be specified multiple times to trace multiple information.
The same as deprecated --trace-level.
Choices are TIMESTAMPS and TENSORS.
Note that opentelemetry mode does not currently
support TENSORS level.
count -1 Specifies the remaining number of traces to be collected.
The default value of -1 specifies to never stop collecting traces.
With a value of 100, Triton will stop tracing requests
after 100 traces are collected.
The same as deprecated --trace-count.
mode triton Specifies which trace APIs to use for collecting traces.
The choices are triton or opentelemetry.

Triton Trace APIs Settings

The following table shows available Triton trace APIs settings for --trace-config triton,<setting>=<value>.

Setting Default Value Description
file empty string Indicates where the trace output should be written.
The same as deprecated --trace-file.
log-frequency 0 Specifies the rate that the traces are written to file.
For example, a value of 50 specifies that Triton will log
to file for every 50 traces collected.
The same as deprecated --trace-log-frequency.

In addition to the trace configuration settings in the command line, you can modify the trace configuration using the trace protocol. This option is currently not supported, when trace mode is set to opentelemetry.

Note: the following flags are deprecated:

The --trace-file option indicates where the trace output should be written. The --trace-rate option specifies the sampling rate. In this example every 100-th inference request will be traced. The --trace-level option indicates the level of trace detail that should be collected. --trace-level option may be specified multiple times to trace multiple information. The --trace-log-frequency option specifies the rate that the traces are written to file. In this example Triton will log to file for every 50 traces collected. The --trace-count option specifies the remaining number of traces to be collected. In this example Triton will stop tracing more requests after 100 traces are collected. Use the --help option to get more information.

Supported Trace Level Option

  • TIMESTAMPS: Tracing execution timestamps of each request.
  • TENSORS: Tracing input and output tensors during the execution.

JSON Trace Output

The trace output is a JSON file with the following schema.

[
  {
    "model_name": $string,
    "model_version": $number,
    "id": $number,
    "request_id": $string,
    "parent_id": $number
  },
  {
    "id": $number,
    "timestamps": [
      { "name" : $string, "ns" : $number }
    ]
  },
  {
    "id": $number
    "activity": $string,
    "tensor":{
      "name": $string,
      "data": $string,
      "shape": $string,
      "dtype": $string
    }
  },
  ...
]

Each trace is assigned a "id", which indicates the model name and version of the inference request. If the trace is from a model run as part of an ensemble, the "parent_id" will indicate the "id" of the containing ensemble. For example:

[
  {
    "id": 1,
    "model_name": "simple",
    "model_version": 1
  },
  ...
]

Each TIMESTAMPS trace will have one or more "timestamps" with each timestamp having a name and the timestamp in nanoseconds ("ns"). For example:

[
  {"id": 1, "timestamps": [{ "name": "HTTP_RECV_START", "ns": 2356425054587444 }] },
  {"id": 1, "timestamps": [{ "name": "HTTP_RECV_END", "ns": 2356425054632308 }] },
  {"id": 1, "timestamps": [{ "name": "REQUEST_START", "ns": 2356425054785863 }] },
  {"id": 1, "timestamps": [{ "name": "QUEUE_START", "ns": 2356425054791517 }] },
  {"id": 1, "timestamps": [{ "name": "INFER_RESPONSE_COMPLETE", "ns": 2356425057587919 }] },
  {"id": 1, "timestamps": [{ "name": "COMPUTE_START", "ns": 2356425054887198 }] },
  {"id": 1, "timestamps": [{ "name": "COMPUTE_INPUT_END", "ns": 2356425057152908 }] },
  {"id": 1, "timestamps": [{ "name": "COMPUTE_OUTPUT_START", "ns": 2356425057497763 }] },
  {"id": 1, "timestamps": [{ "name": "COMPUTE_END", "ns": 2356425057540989 }] },
  {"id": 1, "timestamps": [{ "name": "REQUEST_END", "ns": 2356425057643164 }] },
  {"id": 1, "timestamps": [{ "name": "HTTP_SEND_START", "ns": 2356425057681578 }] },
  {"id": 1, "timestamps": [{ "name": "HTTP_SEND_END", "ns": 2356425057712991 }] }
]

Each TENSORS trace will contain an "activity" and a "tensor". "activity" indicates the type of tensor, including "TENSOR_QUEUE_INPUT" and "TENSOR_BACKEND_OUTPUT" by now. "tensor" has the detail of tensor, including its "name", "data" and "dtype". For example:

[
  {
    "id": 1,
    "activity": "TENSOR_QUEUE_INPUT",
    "tensor":{
      "name": "input",
      "data": "0.1,0.1,0.1,...",
      "shape": "1,16",
      "dtype": "FP32"
    }
  }
]

Trace Summary Tool

An example trace summary tool can be used to summarize a set of traces collected from Triton. Basic usage is:

$ trace_summary.py <trace file>

This produces a summary report for all traces in the file. HTTP and GRPC inference requests are reported separately.

File: trace.json
Summary for simple (-1): trace count = 1
HTTP infer request (avg): 378us
	Receive (avg): 21us
	Send (avg): 7us
	Overhead (avg): 79us
	Handler (avg): 269us
  		Overhead (avg): 11us
  		Queue (avg): 15us
  		Compute (avg): 242us
  			Input (avg): 18us
  			Infer (avg): 208us
  			Output (avg): 15us
Summary for simple (-1): trace count = 1
GRPC infer request (avg): 21441us
	Wait/Read (avg): 20923us
	Send (avg): 74us
	Overhead (avg): 46us
	Handler (avg): 395us
  		Overhead (avg): 16us
  		Queue (avg): 47us
  		Compute (avg): 331us
  			Input (avg): 30us
  			Infer (avg): 286us
  			Output (avg): 14us

Use the -t option to get a summary for each trace in the file. This summary shows the time, in microseconds, between different points in the processing of an inference request. For example, the below output shows that it took 15us from the start of handling the request until the request was enqueued in the scheduling queue.

$ trace_summary.py -t <trace file>
...
simple (-1):
  	grpc wait/read start
  		26529us
  	grpc wait/read end
  		39us
  	request handler start
  		15us
  	queue start
  		20us
  	compute start
  		266us
  	compute end
  		4us
  	request handler end
  		19us
  	grpc send start
  		77us
  	grpc send end
...

The script can also show the data flow of the first request if there are TENSORS traces in the file. If the TENSORS traces are from an ensemble, the data flow will be shown with the dependency of each model.

...
Data Flow:
	==========================================================
	Name:   ensemble
	Version:1
	QUEUE_INPUT:
		input: [[0.705676  0.830855  0.833153]]
	BACKEND_OUTPUT:
		output: [[1. 2. 7. 0. 4. 7. 9. 3. 4. 9.]]
	==========================================================
		==================================================
		Name:   test_trt1
		Version:1
		QUEUE_INPUT:
			input: [[0.705676  0.830855  0.833153]]
		BACKEND_OUTPUT:
			output1: [[1. 1. ...]]
		==================================================
		==================================================
		Name:   test_trt2
		Version:1
		QUEUE_INPUT:
			input: [[0.705676  0.830855  0.833153]]
		BACKEND_OUTPUT:
			output2: [[2. 2. ...]]
		==================================================
		==================================================
		Name:   test_py
		Version:1
		QUEUE_INPUT:
			output1: [[1. 1. ...]]
		QUEUE_INPUT:
			output2: [[2. 2. ...]]
		BACKEND_OUTPUT:
			output: [[1. 2. 7. 0. 4. 7. 9. 3. 4. 9.]]
		==================================================
...

The meaning of the trace timestamps is:

  • GRPC Request Wait/Read: Collected only for inference requests that use the GRPC protocol. The time spent waiting for a request to arrive at the server and for that request to be read. Because wait time is included in the time it is not a useful measure of how much time is spent reading a request from the network. Tracing an HTTP request will provide an accurate measure of the read time.

  • HTTP Request Receive: Collected only for inference requests that use the HTTP protocol. The time required to read the inference request from the network.

  • Send: The time required to send the inference response.

  • Overhead: Additional time required in the HTTP or GRPC endpoint to process the inference request and response.

  • Handler: The total time spent handling the inference request, not including the HTTP and GRPC request/response handling.

    • Queue: The time the inference request spent in the scheduling queue.

    • Compute: The time the inference request spent executing the actual inference. This time includes the time spent copying input and output tensors. If --trace-level=TIMESTAMPS then a breakdown of the compute time will be provided as follows:

      • Input: The time to copy input tensor data as required by the inference framework / backend. This includes the time to copy input tensor data to the GPU.

      • Infer: The time spent executing the model to perform the inference.

      • Output: The time to copy output tensor data as required by the inference framework / backend. This includes the time to copy output tensor data from the GPU.

    • Overhead: Additional time required for request handling not covered by Queue or Compute times.

  • Data Flow: The data flow of the first request. It contains the input and output tensors of each part of execution.

    • Name: The name of model.

    • Version: The version of model.

    • QUEUE_INPUT: The tensor entering the queue of a backend to wait for scheduling.

    • BACKEND_OUTPUT: The tensor in the response of a backend.

Tracing for BLS models

Triton does not collect traces for child models invoked from BLS models by default.

To include child models into collected traces, user needs to provide the trace argument (as shown in the example below), when constructing an InferenceRequest object. This helps Triton associate the child model with the parent model's trace (request.trace()).

import triton_python_backend_utils as pb_utils


class TritonPythonModel:
  ...
    def execute(self, requests):
      ...
      for request in requests:
        ...
        inference_request = pb_utils.InferenceRequest(
            model_name='model_name',
            requested_output_names=['REQUESTED_OUTPUT_1', 'REQUESTED_OUTPUT_2'],
            inputs=[<pb_utils.Tensor object>], trace = request.trace())

OpenTelemetry trace support

Triton provides an option to generate and export traces using OpenTelemetry APIs and SDKs.

To specify OpenTelemetry mode for tracing, specify the --trace-config flag as follows:

$ tritonserver --trace-config mode=opentelemetry \
    --trace-config opentelemetry,url=<endpoint> ...

Differences in trace contents from Triton's trace output

OpenTelemetry APIs produce spans that collect the same timestamps as Triton's Trace APIs. Each span also includes model_name, model_version, request_id, and parent_id as an attribute.

The span collects TIMESTAMPS that consist of a name and a timestamp in nanoseconds, which is similar to Triton Trace APIs. However, OpenTelemetry relies on the system's clock for event timestamps, which is based on the system's real-time clock. On the other hand, Triton Trace APIs report timestamps using steady clock, which is a monotonic clock that ensures time always movess forward. This clock is not related to wall clock time and, for example, can measure time since last reboot.

OpenTelemetry trace APIs settings

The following table shows available OpenTelemetry trace APIs settings for --trace-config opentelemetry,<setting>=<value>.

Setting Default Value Description
url http://localhost:4318/v1/traces host:port to which the receiver is going to receive trace data.
resource service.name=triton-inference-server Key-value pairs to be used as resource attributes.
Should be specified following the provided template:
--trace-config opentelemetry,resource=<key>=<value>
For example:
--trace-config opentelemetry,resource=service.name=triton
--trace-config opentelemetry,resource=service.version=1
Alternatively, key-vaue attributes can be specified through
OTEL_RESOURCE_ATTRIBUTES environment variable.

Limitations

  • OpenTelemetry trace mode is not supported on Windows systems.

  • Triton supports only OTLP/HTTP Exporter and allows specification of only url for this exporter through --trace-config. Other options and corresponding default values can be found here.

  • Triton does not support configuration of the opentelemetry trace settings during a Triton run and opentelemetry specific settings are not available for the retrieval through Triton's trace extension.