forked from jliphard/DeepEvolve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
genome.py
145 lines (111 loc) · 4.83 KB
/
genome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""The genome to be evolved."""
import random
import logging
import hashlib
import copy
from train import train_and_score
class Genome():
"""
Represents one genome and all relevant utility functions (add, mutate, etc.).
"""
def __init__( self, all_possible_genes = None, geneparam = {}, u_ID = 0, mom_ID = 0, dad_ID = 0, gen = 0 ):
"""Initialize a genome.
Args:
all_possible_genes (dict): Parameters for the genome, includes:
gene_nb_neurons_i (list): [64, 128, 256] for (i=1,...,6)
gene_nb_layers (list): [1, 2, 3, 4]
gene_activation (list): ['relu', 'elu']
gene_optimizer (list): ['rmsprop', 'adam']
"""
self.accuracy = 0.0
self.all_possible_genes = all_possible_genes
self.geneparam = geneparam #(dict): represents actual genome parameters
self.u_ID = u_ID
self.parents = [mom_ID, dad_ID]
self.generation = gen
#hash only makes sense when we have specified the genes
if not geneparam:
self.hash = 0
else:
self.update_hash()
def update_hash(self):
"""
Refesh each genome's unique hash - needs to run after any genome changes.
"""
genh = str(self.nb_neurons()) + self.geneparam['activation'] \
+ str(self.geneparam['nb_layers']) + self.geneparam['optimizer']
self.hash = hashlib.md5(genh.encode("UTF-8")).hexdigest()
self.accuracy = 0.0
def set_genes_random(self):
"""Create a random genome."""
#print("set_genes_random")
self.parents = [0,0] #very sad - no parents :(
for key in self.all_possible_genes:
self.geneparam[key] = random.choice(self.all_possible_genes[key])
self.update_hash()
def mutate_one_gene(self):
"""Randomly mutate one gene in the genome.
Args:
network (dict): The genome parameters to mutate
Returns:
(Genome): A randomly mutated genome object
"""
# Which gene shall we mutate? Choose one of N possible keys/genes.
gene_to_mutate = random.choice( list(self.all_possible_genes.keys()) )
# And then let's mutate one of the genes.
# Make sure that this actually creates mutation
current_value = self.geneparam[gene_to_mutate]
possible_choices = copy.deepcopy(self.all_possible_genes[gene_to_mutate])
possible_choices.remove(current_value)
self.geneparam[gene_to_mutate] = random.choice( possible_choices )
self.update_hash()
def set_generation(self, generation):
"""needed when a genome is passed on from one generation to the next.
the id stays the same, but the generation is increased"""
self.generation = generation
#logging.info("Setting Generation to %d" % self.generation)
def set_genes_to(self, geneparam, mom_ID, dad_ID):
"""Set genome properties.
this is used when breeding kids
Args:
genome (dict): The genome parameters
IMPROVE
"""
self.parents = [mom_ID, dad_ID]
self.geneparam = geneparam
self.update_hash()
def train(self, trainingset):
"""Train the genome and record the accuracy.
Args:
dataset (str): Name of dataset to use.
"""
if self.accuracy == 0.0: #don't bother retraining ones we already trained
self.accuracy = train_and_score(self, trainingset)
def print_genome(self):
"""Print out a genome."""
self.print_geneparam()
logging.info("Acc: %.2f%%" % (self.accuracy * 100))
logging.info("UniID: %d" % self.u_ID)
logging.info("Mom and Dad: %d %d" % (self.parents[0], self.parents[1]))
logging.info("Gen: %d" % self.generation)
logging.info("Hash: %s" % self.hash)
def print_genome_ma(self):
"""Print out a genome."""
self.print_geneparam()
logging.info("Acc: %.2f%% UniID: %d Mom and Dad: %d %d Gen: %d" % (self.accuracy * 100, self.u_ID, self.parents[0], self.parents[1], self.generation))
logging.info("Hash: %s" % self.hash)
# print nb_neurons as single list
def print_geneparam(self):
g = self.geneparam.copy()
nb_neurons = self.nb_neurons()
for i in range(1,7):
g.pop('nb_neurons_' + str(i))
# replace individual layer numbers with single list
g['nb_neurons'] = nb_neurons
logging.info(g)
# convert nb_neurons_i at each layer to a single list
def nb_neurons(self):
nb_neurons = [None] * 6
for i in range(0,6):
nb_neurons[i] = self.geneparam['nb_neurons_' + str(i+1)]
return nb_neurons