forked from jliphard/DeepEvolve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
brute.py
executable file
·98 lines (75 loc) · 2.6 KB
/
brute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
"""Iterate over every combination of hyperparameters."""
from __future__ import print_function
import logging
from genome import Genome
from tqdm import tqdm
# Setup logging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p',
level=logging.INFO#,
#filename='brute-log.txt'
)
def train_genomes(genomes, dataset):
"""Train each network.
Args:
networks (list): Current population of networks
dataset (str): Dataset to use for training/evaluating
"""
pbar = tqdm(total=len(genomes))
for genome in genomes:
genome.train(dataset)
genome.print_genome()
pbar.update(1)
pbar.close()
# Sort our final population.
genomes = sorted(genomes, key=lambda x: x.accuracy, reverse=True)
# Print out the top 5 networks.
print_genomes(genomes[:5])
def print_genomes(genomes):
"""Print a list of networks.
Args:
networks (list): The population of networks
"""
logging.info('-'*80)
for genome in genomes:
genome.print_genome()
def generate_genome_list(all_possible_genes):
"""Generate a list of all possible networks.
Args:
all_possible_genes (dict): The parameter choices
Returns:
networks (list): A list of network objects
"""
genomes = []
# This is silly.
for nbn in all_possible_genes['nb_neurons']:
for nbl in all_possible_genes['nb_layers']:
for a in all_possible_genes['activation']:
for o in all_possible_genes['optimizer']:
# Set the parameters.
genome = {
'nb_neurons': nbn,
'nb_layers': nbl,
'activation': a,
'optimizer': o,
}
# Instantiate a network object with set parameters.
genome_obj = Genome()
genome_obj.set_genes_to(genome, 0, 0)
genomes.append(genome_obj)
return genomes
def main():
"""Brute force test every network."""
dataset = 'cifar10_cnn'
all_possible_genes = {
'nb_neurons': [16, 32, 64, 128],
'nb_layers': [1, 2, 3, 4, 5],
'activation': ['relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid','softplus','linear'],
'optimizer': ['rmsprop', 'adam', 'sgd', 'adagrad', 'adadelta', 'adamax', 'nadam'],
}
logging.info("***Brute forcing networks***")
genomes = generate_genome_list(all_possible_genes)
train_genomes(genomes, dataset)
if __name__ == '__main__':
main()