forked from ethereum-optimism/optimism
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathL1ChugSplashProxy.sol
289 lines (255 loc) · 10.7 KB
/
L1ChugSplashProxy.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/**
* @title IL1ChugSplashDeployer
*/
interface IL1ChugSplashDeployer {
function isUpgrading() external view returns (bool);
}
/**
* @custom:legacy
* @title L1ChugSplashProxy
* @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
* functions `setCode` and `setStorage` for changing the code or storage of the contract.
*
* Note for future developers: do NOT make anything in this contract 'public' unless you
* know what you're doing. Anything public can potentially have a function signature that
* conflicts with a signature attached to the implementation contract. Public functions
* SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
* reason not to have that modifier. And there almost certainly is not a good reason to not
* have that modifier. Beware!
*/
contract L1ChugSplashProxy {
/**
* @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
* contract, the appended bytecode will be deployed as given.
*/
bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
/**
* @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
*/
bytes32 internal constant IMPLEMENTATION_KEY =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
*/
bytes32 internal constant OWNER_KEY =
0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @notice Blocks a function from being called when the parent signals that the system should
* be paused via an isUpgrading function.
*/
modifier onlyWhenNotPaused() {
address owner = _getOwner();
// We do a low-level call because there's no guarantee that the owner actually *is* an
// L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
// it turns out that it isn't the right type of contract.
(bool success, bytes memory returndata) = owner.staticcall(
abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
);
// If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
// can just continue as normal. We also expect that the return value is exactly 32 bytes
// long. If this isn't the case then we can safely ignore the result.
if (success && returndata.length == 32) {
// Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
// case that the isUpgrading function returned something other than 0 or 1. But we only
// really care about the case where this value is 0 (= false).
uint256 ret = abi.decode(returndata, (uint256));
require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
}
_;
}
/**
* @notice Makes a proxy call instead of triggering the given function when the caller is
* either the owner or the zero address. Caller can only ever be the zero address if
* this function is being called off-chain via eth_call, which is totally fine and can
* be convenient for client-side tooling. Avoids situations where the proxy and
* implementation share a sighash and the proxy function ends up being called instead
* of the implementation one.
*
* Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
* there's a way for someone to send a transaction with msg.sender == address(0) in any
* real context then we have much bigger problems. Primary reason to include this
* additional allowed sender is because the owner address can be changed dynamically
* and we do not want clients to have to keep track of the current owner in order to
* make an eth_call that doesn't trigger the proxied contract.
*/
// slither-disable-next-line incorrect-modifier
modifier proxyCallIfNotOwner() {
if (msg.sender == _getOwner() || msg.sender == address(0)) {
_;
} else {
// This WILL halt the call frame on completion.
_doProxyCall();
}
}
/**
* @param _owner Address of the initial contract owner.
*/
constructor(address _owner) {
_setOwner(_owner);
}
// slither-disable-next-line locked-ether
receive() external payable {
// Proxy call by default.
_doProxyCall();
}
// slither-disable-next-line locked-ether
fallback() external payable {
// Proxy call by default.
_doProxyCall();
}
/**
* @notice Sets the code that should be running behind this proxy.
*
* Note: This scheme is a bit different from the standard proxy scheme where one would
* typically deploy the code separately and then set the implementation address. We're
* doing it this way because it gives us a lot more freedom on the client side. Can
* only be triggered by the contract owner.
*
* @param _code New contract code to run inside this contract.
*/
function setCode(bytes memory _code) external proxyCallIfNotOwner {
// Get the code hash of the current implementation.
address implementation = _getImplementation();
// If the code hash matches the new implementation then we return early.
if (keccak256(_code) == _getAccountCodeHash(implementation)) {
return;
}
// Create the deploycode by appending the magic prefix.
bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
// Deploy the code and set the new implementation address.
address newImplementation;
assembly {
newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
}
// Check that the code was actually deployed correctly. I'm not sure if you can ever
// actually fail this check. Should only happen if the contract creation from above runs
// out of gas but this parent execution thread does NOT run out of gas. Seems like we
// should be doing this check anyway though.
require(
_getAccountCodeHash(newImplementation) == keccak256(_code),
"L1ChugSplashProxy: code was not correctly deployed"
);
_setImplementation(newImplementation);
}
/**
* @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
* perform upgrades in a more transparent way. Only callable by the owner.
*
* @param _key Storage key to modify.
* @param _value New value for the storage key.
*/
function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
assembly {
sstore(_key, _value)
}
}
/**
* @notice Changes the owner of the proxy contract. Only callable by the owner.
*
* @param _owner New owner of the proxy contract.
*/
function setOwner(address _owner) external proxyCallIfNotOwner {
_setOwner(_owner);
}
/**
* @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
* making an eth_call and setting the "from" address to address(0).
*
* @return Owner address.
*/
function getOwner() external proxyCallIfNotOwner returns (address) {
return _getOwner();
}
/**
* @notice Queries the implementation address. Can only be called by the owner OR by making an
* eth_call and setting the "from" address to address(0).
*
* @return Implementation address.
*/
function getImplementation() external proxyCallIfNotOwner returns (address) {
return _getImplementation();
}
/**
* @notice Sets the implementation address.
*
* @param _implementation New implementation address.
*/
function _setImplementation(address _implementation) internal {
assembly {
sstore(IMPLEMENTATION_KEY, _implementation)
}
}
/**
* @notice Changes the owner of the proxy contract.
*
* @param _owner New owner of the proxy contract.
*/
function _setOwner(address _owner) internal {
assembly {
sstore(OWNER_KEY, _owner)
}
}
/**
* @notice Performs the proxy call via a delegatecall.
*/
function _doProxyCall() internal onlyWhenNotPaused {
address implementation = _getImplementation();
require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
assembly {
// Copy calldata into memory at 0x0....calldatasize.
calldatacopy(0x0, 0x0, calldatasize())
// Perform the delegatecall, make sure to pass all available gas.
let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
// Copy returndata into memory at 0x0....returndatasize. Note that this *will*
// overwrite the calldata that we just copied into memory but that doesn't really
// matter because we'll be returning in a second anyway.
returndatacopy(0x0, 0x0, returndatasize())
// Success == 0 means a revert. We'll revert too and pass the data up.
if iszero(success) {
revert(0x0, returndatasize())
}
// Otherwise we'll just return and pass the data up.
return(0x0, returndatasize())
}
}
/**
* @notice Queries the implementation address.
*
* @return Implementation address.
*/
function _getImplementation() internal view returns (address) {
address implementation;
assembly {
implementation := sload(IMPLEMENTATION_KEY)
}
return implementation;
}
/**
* @notice Queries the owner of the proxy contract.
*
* @return Owner address.
*/
function _getOwner() internal view returns (address) {
address owner;
assembly {
owner := sload(OWNER_KEY)
}
return owner;
}
/**
* @notice Gets the code hash for a given account.
*
* @param _account Address of the account to get a code hash for.
*
* @return Code hash for the account.
*/
function _getAccountCodeHash(address _account) internal view returns (bytes32) {
bytes32 codeHash;
assembly {
codeHash := extcodehash(_account)
}
return codeHash;
}
}