diff --git a/CHANGELOG.md b/CHANGELOG.md index cbc4e8c3a0..097c72d636 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -6,6 +6,17 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/). ## [Unreleased] ### changed +- **inputdata** changed GDP base year from 2005USD to 2017USD +- **config** changed default input data to use 2017USD +- **module_documentation** all references to USD05 changed to USD17 + +### added +- + +### removed +- + +### fixed - **11_costs** changed equation to fix bug in total water cost calculation diff --git a/DESCRIPTION b/DESCRIPTION index 0f91ffe750..f830cf4be4 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -21,7 +21,7 @@ Imports: m4fsdp, madrat, magclass (>= 6.14.0), - magpie4 (>= 2.12.6), + magpie4 (>= 2.13.3), MagpieNCGains, magpiesets, mip, diff --git a/config/default.cfg b/config/default.cfg index 62f84ba1fc..6e7a3223c2 100644 --- a/config/default.cfg +++ b/config/default.cfg @@ -22,11 +22,11 @@ cfg$model <- "main.gms" #def = "main.gms" #### input settings #### # which input data sets should be used? -cfg$input <- c(regional = "rev4.111_h12_magpie.tgz", - cellular = "rev4.111_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz", - validation = "rev4.111_h12_validation.tgz", - additional = "additional_data_rev4.53.tgz", - calibration = "calibration_H12_26Mar24_fixed.tgz") +cfg$input <- c(regional = "rev4.112_h12_magpie.tgz", + cellular = "rev4.112_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz", + validation = "rev4.112_h12_magpie.tgz", + additional = "additional_data_rev4.57.tgz", + calibration = "calibration_H12_27Sep24.tgz") # NOTE: It is recommended to recalibrate the model when changing cellular input data # as well as for any other setting that would affect initial values in the model, @@ -93,14 +93,14 @@ cfg$best_calib <- TRUE # def = TRUE # * (FALSE): Land conversion cost calibration will not be performed cfg$recalibrate_landconversion_cost <- "ifneeded" #def "ifneeded" # Up to which accuracy shall be recalibrated? -cfg$calib_accuracy_landconversion_cost <- 0.05 # def = 0.05 +cfg$calib_accuracy_landconversion_cost <- 0.01 # def = 0.01 # What is the maximum number of iterations if the precision goal is not reached? cfg$calib_maxiter_landconversion_cost <- 40 # def = 40 # Restart from existing calibration factors (TRUE or FALSE) -cfg$restart_landconversion_cost <- FALSE # def = FALSE +cfg$restart_landconversion_cost <- TRUE # def = TRUE # Number of lowpass filter iterations applied on calibration factors # for time steps 1995-2015 -cfg$lowpass_filter_landconversion_cost <- 1 # def= 1 +cfg$lowpass_filter_landconversion_cost <- 5 # def= 5 # Set upper limit for cropland calibration factor cfg$cost_calib_max_landconversion_cost <- 3 # def= 3 # Set lower limit for cropland calibration factor @@ -108,7 +108,7 @@ cfg$cost_calib_min_landconversion_cost <- 0.05 # def= 0.05 # Selection type of calibration factors. # If FALSE, calibration factors from the last iteration are used. # If TRUE, calibration factors from the iteration with the lowest divergence are used. -cfg$best_calib_landconversion_cost <- FALSE # def = FALSE +cfg$best_calib_landconversion_cost <- TRUE # def = TRUE # Settings for NPI/NDC recalculation # * (TRUE): NPI/NDC recalculation will be performed @@ -206,7 +206,7 @@ cfg$gms$sm_fix_cc <- 2025 # * (landmatrix_dec18): includes a land transition matrix cfg$gms$land <- "landmatrix_dec18" # def = landmatrix_dec18 -# * Artificial cost for balance variables (USD05MER per ha) +# * Artificial cost for balance variables (USD17MER per ha) # * The balance variables in the land module avoid infeasibilities due to # * differences in accuracy between parameters and variables in GAMS. # * High costs make sure that the balance variables are only used as a last resort. @@ -585,8 +585,8 @@ cfg$gms$trade <- "selfsuff_reduced" # def = selfsuff_reduced # * options for `selfsuff_reduced` and `selfsuff_reduced_bilateral22` realizations: # * Commodities that can have additional imports to maintain feasibility cfg$gms$k_import21 <- "wood, woodfuel" -# * Cost for additional imports to maintain feasibility in USD05MER per tDM -cfg$gms$s21_cost_import <- 10000 # def = 10000 +# * Cost for additional imports to maintain feasibility in USD17MER per tDM +cfg$gms$s21_cost_import <- 12300 # def = 10000 * 1.23 # * trade balance reduction scenario # * (l909090r808080): 10 percent trade liberalisation for secondary and @@ -619,8 +619,9 @@ cfg$gms$s21_trade_tariff_startyear <- 2025 # * end year of fadeout if s21_trade_tariff_fadeout = 1 # def = 2050 cfg$gms$s21_trade_tariff_targetyear <- 2050 -# * Minimum trade margin for forestry products (USD05MER per tDM) -cfg$gms$s21_min_trade_margin_forestry <- 50 # def = 50 +# * Minimum trade margin for forestry products (USD17MER per tDM) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate:1.23) +cfg$gms$s21_min_trade_margin_forestry <- 62 # def = 50 * 1.23 # ***--------------------- 22_land_conservation -------------------------------------- @@ -764,14 +765,23 @@ cfg$gms$s29_treecover_max <- 0.4 # def = 0.4 cfg$gms$s29_treecover_scenario_start <- 2025 # def = 2025 # * Target year of fader (year when full implementation is reached) cfg$gms$s29_treecover_scenario_target <- 2050 # def = 2050 -# * Penalty for violation of treecover target before scenario start (USD05MER per ha) -cfg$gms$s29_treecover_penalty_before <- 0 # def = 0 -# * Penalty for violation of treecover target after scenario start (USD05MER per ha) -cfg$gms$s29_treecover_penalty <- 5000 # def = 5000 -# * Tree cover establishment cost (USD05MER per ha) -cfg$gms$s29_cost_treecover_est <- 2000 # def = 2000 -# * Tree cover recurring cost (USD05MER per ha) -cfg$gms$s29_cost_treecover_recur <- 500 # def = 500 +# * Penalty for violation of treecover target before scenario start (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate:1.23) +cfg$gms$s29_treecover_penalty_before <- 0 # def = 0 +# * Penalty for violation of treecover target after scenario start (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s29_treecover_penalty <- 6150 # def = 5000 * 1.23 +# * Tree cover establishment cost (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate:1.23) +cfg$gms$s29_cost_treecover_est <- 2460 # def = 2000 * 1.23 +# * Tree cover recurring cost (USD17MER per ha) +cfg$gms$s29_cost_treecover_recur <- 615 # def = 500 * 1.23 +# * Switch for using natural vegetation (0) or plantation (1) growth curves towards LPJmL natural +# * vegetation carbon density. +cfg$gms$s29_treecover_plantation <- 0 # def = 0 +# * Switch for using secondary vegetation (0) or timber plantation (1) BII coefficients +# * The recommend setting is to map the BII coefficient to the choice of the growth curve. +cfg$gms$s29_treecover_bii_coeff <- 0 # def = 0 # * Sigmoid fader for minimum area share of fallow land on total cropland at cluster level # * Minimum area share of fallow land on total cropland in target year @@ -782,8 +792,9 @@ cfg$gms$s29_fallow_max <- 0.4 # def = 0.4 cfg$gms$s29_fallow_scenario_start <- 2025 # def = 2025 # * Target year of fader (year when full implementation is reached) cfg$gms$s29_fallow_scenario_target <- 2050 # def = 2050 -# * Penalty for violation of fallow land target (USD05MER per ha) -cfg$gms$s29_fallow_penalty <- 500 # def = 500 +# * Penalty for violation of fallow land target (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s29_fallow_penalty <- 615 # def = 500 * 1.23 # ***--------------------- 30_croparea --------------------------------------- # * 30_croparea defines the croparea, which is a subcomponent of total cropland defined in 29_cropland. @@ -821,8 +832,9 @@ cfg$gms$s30_betr_target_noselect <- 0 # def = 0 cfg$gms$s30_betr_scenario_start <- 2025 # def = 2025 # * Target year of fader (year when full implementation is reached) cfg$gms$s30_betr_scenario_target <- 2050 # def = 2050 -# * Penalty for violation of the target (USD05MER per ha) -cfg$gms$s30_betr_penalty <- 2000 # def = 2000 +# * Penalty for violation of the target (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s30_betr_penalty <- 2460 # def = 2000 * 1.23 # * Allowed annual cropland growth per year per region, relative to the current cropland level # * e.g., 0.02: 2% annual growth, compounded to 10.4% growth for five-years timestep @@ -865,7 +877,7 @@ cfg$gms$s30_rotation_scenario_target <- 2050 # def = 2050 # NOTE: It is recommended to recalibrate the model when changing this setting! cfg$gms$past <- "endo_jun13" # def = endo_jun13 -# * Factor requirements (USD04 per ton DM) +# * Factor requirements (USD17 per ton DM) cfg$gms$s31_fac_req_past <- 1 # def = 1 # * switch for unequal (1) or equal (0) sign in pasture production constraint q31_prod. @@ -994,11 +1006,13 @@ cfg$gms$s32_forestry_int_rate <- 0.05 # def = 0.05 # * 1 = forward looking (establishment based on future demand according to rotation length) cfg$gms$s32_demand_establishment <- 1 # def = 1 -# Establishment cost for plantations (USD per ha) -cfg$gms$s32_est_cost_plant <- 2000 # def = 2000 +# Establishment cost for plantations (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s32_est_cost_plant <- 2460 # def = 2000 * 1.23 -# Establishment cost for natural vegetation (USD per ha) -cfg$gms$s32_est_cost_natveg <- 2000 # def = 2000 +# Establishment cost for natural vegetation (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s32_est_cost_natveg <- 2460 # def = 2000 * 1.23 # Harvesting switch for timber production # * 0 = No harvested area from plantations, no age-class shifting (area held constant at 1995 levels) @@ -1093,7 +1107,7 @@ cfg$gms$c35_pot_forest_scenario <- "cc" # def = "cc" # * optimization cfg$gms$employment <- "exo_may22" # default = "exo_may22" -# * global minimum wage in USDMER05 per hour that needs to be reached in all countries by 2050 +# * global minimum wage in USD17MER per hour that needs to be reached in all countries by 2050 cfg$gms$s36_minimum_wage <- 0 # default = 0 (no minimum wage) # * A scenario that increases wages can either be fully related to productivity increase @@ -1168,16 +1182,21 @@ cfg$gms$s38_target_fulfillment <- 0.5 # default 0.5 # * (calib): Costs for cropland expansion are scaled with a regional calibration factor # * Costs for pasture and forestry expansion are global static cfg$gms$landconversion <- "calib" # def = calib -# * Cost for cropland expansion before calibration (USD05MER per hectare) -cfg$gms$s39_cost_establish_crop <- 10000 #def = 10000 -# * Reward for cropland reduction before calibration (USD05MER per hectare) -cfg$gms$s39_reward_crop_reduction <- 6000 -# * Cost for pasture land expansion (USD05MER per hectare) -cfg$gms$s39_cost_establish_past <- 8000 #def = 8000 -# * Cost for foresty land expansion (USD05MER per hectare) -cfg$gms$s39_cost_establish_forestry <- 1000 #def = 1000 -# * Cost for urban land expansion (USD05MER per hectare) -cfg$gms$s39_cost_establish_urban <- 10000 #def = 10000 +# * Cost for cropland expansion before calibration (USD17MER per hectare) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s39_cost_establish_crop <- 12300 #def = 10000 * 1.23 +# * Reward for cropland reduction before calibration (USD17MER per hectare) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s39_reward_crop_reduction <- 7380 #def = 6000 * 1.23 +# * Cost for pasture land expansion (USD17MER per hectare) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s39_cost_establish_past <- 9840 #def = 8000 * 1.23 +# * Cost for foresty land expansion (USD17MER per hectare) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s39_cost_establish_forestry <- 1230 #def = 1000 * 1.23 +# * Cost for urban land expansion (USD17MER per hectare) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s39_cost_establish_urban <- 12300 #def = 10000 * 1.23 # * Switch for ignoring land conversion cost calibration factors # * Options: 1 (ignore calibration factors) # * 0 (use calibration factors) @@ -1350,12 +1369,12 @@ cfg$gms$s44_bii_lower_bound <- 0 #def = 0 # * Note: The BII constraint is defined as a minimum constraint. Therefore, the actual BII can be higher than the lower bound. cfg$gms$c44_bii_decrease <- 1 #def = 1 -# * Technical costs for missing BII increase (USD per unit of BII) +# * Technical costs for missing BII increase (USD17MER per unit of BII) cfg$gms$s44_cost_bii_missing <- 1000000 #def = 1000000 # ** Options for realization `bv_btc_mar21` -# * Price for biodiversity stock loss/gain in target year (USD per ha) +# * Price for biodiversity stock loss/gain in target year (USD17MER per ha) # * Plausible range: 0-10000 # * Indicative outcomes # * 0: decrease of BII @@ -1364,7 +1383,7 @@ cfg$gms$s44_cost_bii_missing <- 1000000 #def = 1000000 # * 10000: stronger increase of BII cfg$gms$s44_target_price <- 0 #def = 0 -# * Price for biodiversity stock loss/gain in start year (USD per ha) +# * Price for biodiversity stock loss/gain in start year (USD17MER per ha) cfg$gms$s44_start_price <- 0 #def = 0 @@ -1600,8 +1619,8 @@ cfg$path_to_report_ghgprices <- NA # * Note: minimum C price (see below) will be set regardless of this setting cfg$gms$c56_mute_ghgprices_until <- "y2030" # def = y2030 -# * Minium C price (USD per tC) for future time steps until (and including) the year defined in `c56_mute_ghgprices_until` -# * Note: in case of NDC policy a C price of 18 USD per tC (5 USD per tCO2) is used to guide land-use decisions (set via scenario_config.csv) +# * Minium C price (USD17MER per tC) for future time steps until (and including) the year defined in `c56_mute_ghgprices_until` +# * Note: in case of NDC policy a C price of 18 USD17MER per tC (5 USD17MER per tCO2) is used to guide land-use decisions (set via scenario_config.csv) cfg$gms$s56_minimum_cprice <- 0 # def = 0 # * Switch and specification of countries for which pollutant pricing in @@ -1636,17 +1655,18 @@ cfg$gms$s56_c_price_exp_aff <- 50 # def = 50 # * Values > 0 will reduce the incentive for c-price-induced re/afforestation cfg$gms$s56_buffer_aff <- 0.5 # def = 0.5 -# * Upper limit for CH4 and N2O GHG price (USD05MER per tC) +# * Upper limit for CH4 and N2O GHG price (USD17MER per tC) # * Limits GHG prices selected in c56_pollutant_prices to the chosen value. -# * CH4 and N2O GHG prices are limited by default to 4000 USD05MER per tC equivalent, +# * CH4 and N2O GHG prices are limited by default to 4920 USD17MER per tC equivalent, # * which induces the maximum abatement possible with c57_macc_version = "PBL_2022" -# * Beyond 4000 USD05MER per tC equivalent no further technical mitigation is possible +# * Beyond 4920 USD17MER per tC equivalent no further technical mitigation is possible # * but would increase agricultural prices. # * Suggested limits for different c57_macc_version settings -# * PBL_2007: 1000 (200 steps, 5 USD each) -# * PBL_2019: 4000 (200 steps, 20 USD each) -# * PBL_2022: 4000 (200 steps, 20 USD each) -cfg$gms$s56_limit_ch4_n2o_price <- 4000 # def = 4000 +# * PBL_2007: 1230 (200 steps, 5.615 USD each) +# * PBL_2019: 4920 (200 steps, 24.6 USD each) +# * PBL_2022: 4920 (200 steps, 24.6 USD each) +# * (values above are inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +cfg$gms$s56_limit_ch4_n2o_price <- 4920 # def = 4000 * 1.23 # * NOTE: The following 2 options for emission pricing have strong interactions in runs with CO2 prices and should only be changed by experienced users. # * The main purpose of these options is to regulate the pricing of positive emissions. Note that re/afforestation is covered by a separate mechanism. @@ -1726,18 +1746,19 @@ cfg$gms$peatland <- "v2" # def = v2 # * Inf (on) cfg$gms$s58_rewetting_switch <- Inf # def = Inf -# * One-time and recurring costs for peatland rewetting (USD05MER per ha) -cfg$gms$s58_cost_rewet_onetime <- 1000 # def = 1000 -cfg$gms$s58_cost_rewet_recur <- 30 # def = 30 +# * One-time and recurring costs for peatland rewetting (USD17MER per ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate:1.23) +cfg$gms$s58_cost_rewet_onetime <- 1230 # def = 1000 * 1.23 +cfg$gms$s58_cost_rewet_recur <- 37 # def = 30 * 1.23 -# * One-time and recurring costs for peatland drainage (USD05MER per ha) +# * One-time and recurring costs for peatland drainage (USD17MER per ha) # * One-time costs apply on the drainage of intact and rewetted peatland # * Recurring costs apply on the level of drained and managed peatland cfg$gms$s58_cost_drain_intact_onetime <- 0 # def = 0 -cfg$gms$s58_cost_drain_rewet_onetime <- 1000 # def = 1000 +cfg$gms$s58_cost_drain_rewet_onetime <- 0 # def = 0 cfg$gms$s58_cost_drain_recur <- 0 # def = 0 -# * Penalty for technical peatland balance term (USD05MER) +# * Penalty for technical peatland balance term (USD17MER) cfg$gms$s58_balance_penalty <- 1000000 # def = 1000000 # * Switch for fixing peatland area until the year given by s58_fix_peatland to historic levels (not available in `off`). @@ -1882,13 +1903,14 @@ cfg$gms$c60_biodem_level <- 1 # def = 1 # * Therefore, the minimum demand is of particular importance for the coupling with REMIND. cfg$gms$s60_2ndgen_bioenergy_dem_min <- 1 # def = 1 -# * t DM-based first generation bioenergy subsidy (USD05MER per ton) +# * t DM-based first generation bioenergy subsidy (USD17MER per ton) # * (1stgen_priced_dec18): c60_bioenergy_subsidy is applied constant over historic and model horizon, c60_bioenergy_subsidy_fix_SSP2 has no effect # * (1st2ndgen_priced_feb24): c60_bioenergy_subsidy_fix_SSP2 is applied constant to historic time steps (up until sm_fix_SSP2). # * c60_bioenergy_subsidy is applied constant to model horizon (after sm_fix_SSP2) # * If GJ-based prices are used (setting below), c60_bioenergy_subsidy should be set to 0. -cfg$gms$c60_bioenergy_subsidy <- 300 # def = 300 -cfg$gms$c60_bioenergy_subsidy_fix_SSP2 <- 300 # def = 300 +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate:1.23) +cfg$gms$c60_bioenergy_subsidy <- 369 # def = 300 * 1.23 +cfg$gms$c60_bioenergy_subsidy_fix_SSP2 <- 369 # def = 300 * 1.23 # ** Options for realization `1st2ndgen_priced_feb24` @@ -1897,7 +1919,7 @@ cfg$gms$c60_bioenergy_subsidy_fix_SSP2 <- 300 # def = 300 # * This can be used to set model horizon minimum demand to 0 for price-driven runs cfg$gms$s60_2ndgen_bioenergy_dem_min_post_fix <- 1 # def = 1 -# * GJ-based bioenergy subsidy (USD05MER per GJ), only used in 1st2ndgen_priced_feb24 +# * GJ-based bioenergy subsidy (USD17MER per GJ), only used in 1st2ndgen_priced_feb24 # * Target prices for 1st and 2nd gen bioenergy cfg$gms$s60_bioenergy_gj_price_1st <- 0 # def = 0 cfg$gms$s60_bioenergy_price_2nd <- 0 # def = 0 @@ -1991,11 +2013,13 @@ cfg$gms$timber <- "default" # def = default # * 0=off cfg$gms$s73_timber_demand_switch <- 1 # def = 1 -# harvesting cost per ton of dry matter produced (USD/tDM) -s73_timber_prod_cost <- 2000 # def = 2000 +# harvesting cost per ton of dry matter produced (USD17MER/tDM) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +s73_timber_prod_cost <- 2460 # def = 2000 * 1.23 -# harvesting cost per ha of forests (USD/ha) -s73_timber_harvest_cost <- 2000 # def = 2000 +# harvesting cost per ha of forests (USD17MER/ha) +# * (inflated from default originally in USD05 using USD05 --> USD17 inflation rate: 1.23) +s73_timber_harvest_cost <- 2460 # def = 2000 * 1.23 # Cost multiplier for harvesting costs to make natural vegetation harvest expensive # than timber plantation harvest. This provides a signal to the model to harvest @@ -2004,7 +2028,7 @@ s73_cost_multiplier <- 1.5 # def = 1.5 # Cost of production without using any land in case the model is running into infeasibilities. # This is a last ditch effort for the model and the variable associated with this cost -# should not be used in a normally feasible model run (USD/tDM) +# should not be used in a normally feasible model run (USD17MER/tDM) s73_free_prod_cost <- 1000000 # def = 1000000 # Switch for modifying woody biomass demand starting in 2035 diff --git a/config/projects/scenario_config_el2.csv b/config/projects/scenario_config_el2.csv index a1f87bde9b..d8dc50c837 100644 --- a/config/projects/scenario_config_el2.csv +++ b/config/projects/scenario_config_el2.csv @@ -19,5 +19,5 @@ gms$s15_exo_alcohol;1;1;1 gms$s15_alc_scen;0;0;0 gms$factor_costs;sticky_labor;sticky_labor;sticky_labor gms$c70_feed_scen;ssp1;ssp2;ssp2 -input['cellular'];rev4.111EL2_h12_c6a7458f_cellularmagpie_c200_IPSL-CM6A-LR-ssp370_lpjml-8e6c5eb1.tgz;; +input['cellular'];rev4.112EL2_h12_c6a7458f_cellularmagpie_c200_IPSL-CM6A-LR-ssp370_lpjml-8e6c5eb1.tgz;; magicc_emis_scen;REMIND_generic_C_SSP2EU-DSPkB650-DS_betax_DeepDive_noNDC-rem-12.mif;REMIND_generic_C_SSP2EU-DSPkB650-DS_betax_DeepDive_noNDC-rem-12.mif;REMIND_generic_C_SSP2EU-DSPkB650-DS_betax_DeepDive_noNDC-rem-12.mif diff --git a/config/projects/scenario_config_fsec.csv b/config/projects/scenario_config_fsec.csv index f986caf4c6..551e558a57 100644 --- a/config/projects/scenario_config_fsec.csv +++ b/config/projects/scenario_config_fsec.csv @@ -76,9 +76,9 @@ gms$s62_max_dem_bioplastic;0;;;;400;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; gms$c70_fac_req_regr;reg;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; gms$c70_feed_scen;;;;;;;;;;;;;;;;;;ssp1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; gms$c73_build_demand;;;;;;;;;;;;;;;;;;;;;;;;50pc;;;;;;;;;;;;;;;;;;;;;;;;;;; -input['cellular'];rev4.111_FSEC_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;rev4.111_FSEC_0bd54110_cellularmagpie_c200_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1.tgz;rev4.111_FSEC_6819938d_cellularmagpie_c200_MRI-ESM2-0-ssp126_lpjml-8e6c5eb1.tgz;;rev4.111_FSEC_1b5c3817_cellularmagpie_c200_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1.tgz;rev4.111_FSEC_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;rev4.111_FSEC_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz;rev4.111_FSEC_09a63995_cellularmagpie_c200_MRI-ESM2-0-ssp585_lpjml-8e6c5eb1.tgz;;; -input['regional'];rev4.111_FSEC_magpie.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -input['validation'];rev4.111_FSEC_validation.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -input['additional'];additional_data_rev4.51.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; -input['calibration'];calibration_FSEC_26Mar24.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +input['cellular'];rev4.112_FSEC_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;rev4.112_FSEC_0bd54110_cellularmagpie_c200_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1.tgz;rev4.112_FSEC_6819938d_cellularmagpie_c200_MRI-ESM2-0-ssp126_lpjml-8e6c5eb1.tgz;;rev4.112_FSEC_1b5c3817_cellularmagpie_c200_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1.tgz;rev4.112_FSEC_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;rev4.112_FSEC_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz;rev4.112_FSEC_09a63995_cellularmagpie_c200_MRI-ESM2-0-ssp585_lpjml-8e6c5eb1.tgz;;; +input['regional'];rev4.112_FSEC_magpie.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +input['validation'];rev4.112_FSEC_validation.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +input['additional'];additional_data_rev4.57.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; +input['calibration'];calibration_FSEC_27Sep24.tgz;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; magicc_emis_scen;bjoernAR6_C_SSP2-NDC.mif;;;bjoernAR6_C_SSP2-PkBudg900.mif;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;bjoernAR6_C_SSP1-NDC.mif;;;;;;;;;;;;bjoernAR6_C_RemSDP-900-MagSSP1.mif;; diff --git a/config/scenario_config.csv b/config/scenario_config.csv index afe1469f1b..bb43320836 100755 --- a/config/scenario_config.csv +++ b/config/scenario_config.csv @@ -74,4 +74,4 @@ gms$c60_biodem_level;;;;;;;;;;;;;;;;;1;0;;;;;;;;;;;; gms$c60_res_2ndgenBE_dem;;;;ssp1;ssp2;ssp2;ssp3;ssp4;ssp5;sdp;ssp2;sdp;sdp;;;;;;;;;;;;;;;;; gms$c70_feed_scen;;;;ssp1;ssp2;ssp2;ssp3;ssp4;ssp5;ssp1;ssp5;ssp1;ssp1;;;;;;;;;;;;;;;;; gms$s73_timber_demand_switch;;;;;;;;;;;;;;;;;;;;;;1;1;0;;;;;; -input['cellular'];;;;;;;;;;;;;;;;;;;;;;;;;rev4.111_h12_0bd54110_cellularmagpie_c200_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1.tgz;rev4.111_h12_6819938d_cellularmagpie_c200_MRI-ESM2-0-ssp126_lpjml-8e6c5eb1.tgz;rev4.111_h12_1b5c3817_cellularmagpie_c200_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1.tgz;rev4.111_h12_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;rev4.111_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz;rev4.111_h12_09a63995_cellularmagpie_c200_MRI-ESM2-0-ssp585_lpjml-8e6c5eb1.tgz +input['cellular'];;;;;;;;;;;;;;;;;;;;;;;;;rev4.112_h12_0bd54110_cellularmagpie_c200_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1.tgz;rev4.112_h12_6819938d_cellularmagpie_c200_MRI-ESM2-0-ssp126_lpjml-8e6c5eb1.tgz;rev4.112_h12_1b5c3817_cellularmagpie_c200_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1.tgz;rev4.112_h12_3c888fa5_cellularmagpie_c200_MRI-ESM2-0-ssp460_lpjml-8e6c5eb1.tgz;rev4.112_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz;rev4.112_h12_09a63995_cellularmagpie_c200_MRI-ESM2-0-ssp585_lpjml-8e6c5eb1.tgz diff --git a/literature.bib b/literature.bib index 64b837e368..9796ef8f89 100644 --- a/literature.bib +++ b/literature.bib @@ -1698,3 +1698,13 @@ @article{jarvio_LCA_MP_2021 keywords = {LCA, Food, Hydrogen-oxidizing bacteria, Cellular agriculture, Microbial protein}, pages = {145764}, } + + +@techreport{budynski_straw_2020, + title = {Straw manufacturing in {Alberta}}, + url = {https://open.alberta.ca/dataset/690317b0-1d07-4f9e-ae71-6340e16f6493/resource/89789096-1c7a-47ab-beb2-94d55606c922/}, + language = {en}, + institution = {Published by Alberta Agriculture and Forestry}, + author = {Budynski, Stephanie}, + year = {2020}, +} diff --git a/main.gms b/main.gms index e8f0d20e67..6d4bbafcd7 100644 --- a/main.gms +++ b/main.gms @@ -148,23 +148,23 @@ $title magpie *##################### R SECTION START (VERSION INFO) ########################## * -* Used data set: rev4.111_h12_magpie.tgz +* Used data set: rev4.112_h12_magpie.tgz * md5sum: NA * Repository: https://rse.pik-potsdam.de/data/magpie/public * -* Used data set: rev4.111_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz +* Used data set: rev4.112_h12_fd712c0b_cellularmagpie_c200_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1.tgz * md5sum: NA * Repository: https://rse.pik-potsdam.de/data/magpie/public * -* Used data set: rev4.111_h12_validation.tgz +* Used data set: rev4.112_h12_validation.tgz * md5sum: NA * Repository: https://rse.pik-potsdam.de/data/magpie/public * -* Used data set: additional_data_rev4.53.tgz +* Used data set: additional_data_rev4.56.tgz * md5sum: NA * Repository: https://rse.pik-potsdam.de/data/magpie/public * -* Used data set: calibration_H12_26Mar24_fixed.tgz +* Used data set: calibration_H12_27Sep24.tgz * md5sum: NA * Repository: https://rse.pik-potsdam.de/data/magpie/public * @@ -179,11 +179,11 @@ $title magpie * * Regionscode: 62eff8f7 * -* Regions data revision: 4.111 +* Regions data revision: 4.112 * * lpj2magpie settings: * * LPJmL data: MRI-ESM2-0:ssp370 -* * Revision: 4.111 +* * Revision: 4.112 * * aggregation settings: * * Input resolution: 0.5 diff --git a/modules/09_drivers/aug17/declarations.gms b/modules/09_drivers/aug17/declarations.gms index 004c7bc854..d58fb9c2b7 100644 --- a/modules/09_drivers/aug17/declarations.gms +++ b/modules/09_drivers/aug17/declarations.gms @@ -12,22 +12,22 @@ parameters i09_pop_raw(t_all,i,pop_gdp_scen09) Population (mio. per yr) * GDP in MER - i09_gdp_mer_iso(t_all,iso) Income in market exchange rates (mio. USD05MER per yr) - im_gdp_pc_mer_iso(t_all,iso) Income in market exchange rates (mio. USD05MER per yr) - i09_gdp_mer_raw(t_all,i,pop_gdp_scen09) Income in market exchange rates (mio. USD05MER per yr) + i09_gdp_mer_iso(t_all,iso) Income in market exchange rates (mio. USD17MER per yr) + im_gdp_pc_mer_iso(t_all,iso) Income in market exchange rates (mio. USD17MER per yr) + i09_gdp_mer_raw(t_all,i,pop_gdp_scen09) Income in market exchange rates (mio. USD17MER per yr) - i09_gdp_pc_mer_raw(t_all,i,pop_gdp_scen09) Per capita income in market exchange rates (USD05MER per cap per yr) - im_gdp_pc_mer(t_all,i) Per capita income in market exchange rates (USD05MER per cap per yr) - i09_gdp_pc_mer_iso_raw(t_all,iso,pop_gdp_scen09) Per capita income in market exchange rates (USD05MER per cap per yr) + i09_gdp_pc_mer_raw(t_all,i,pop_gdp_scen09) Per capita income in market exchange rates (USD17MER per cap per yr) + im_gdp_pc_mer(t_all,i) Per capita income in market exchange rates (USD17MER per cap per yr) + i09_gdp_pc_mer_iso_raw(t_all,iso,pop_gdp_scen09) Per capita income in market exchange rates (USD17MER per cap per yr) * GDP in PPP - i09_gdp_ppp_iso(t_all,iso) Income in purchasing power parity (mio. USD05PPP per yr) - i09_gdp_ppp_raw(t_all,i,pop_gdp_scen09) Income in purchasing power parity (mio. USD05PPP per yr) - - i09_gdp_pc_ppp_raw(t_all,i,pop_gdp_scen09) Per capita income in purchasing power parity (USD05PPP per cap per yr) - i09_gdp_pc_ppp_iso_raw(t_all,iso,pop_gdp_scen09) Per capita income in purchasing power parity (USD05PPP per cap per yr) - im_gdp_pc_ppp_iso(t_all,iso) Per capita income in purchasing power parity (USD05PPP per cap per yr) + i09_gdp_ppp_iso(t_all,iso) Income in purchasing power parity (mio. USD17PPP per yr) + i09_gdp_ppp_raw(t_all,i,pop_gdp_scen09) Income in purchasing power parity (mio. USD17PPP per yr) + i09_gdp_pc_ppp_raw(t_all,i,pop_gdp_scen09) Per capita income in purchasing power parity (USD17PPP per cap per yr) + i09_gdp_pc_ppp_iso_raw(t_all,iso,pop_gdp_scen09) Per capita income in purchasing power parity (USD17PPP per cap per yr) + im_gdp_pc_ppp_iso(t_all,iso) Per capita income in purchasing power parity (USD17PPP per cap per yr) + * Development State im_development_state(t_all,i) Development state according to the World Bank definition where 0=low income country 1=high income country in high income level (1) im_physical_inactivity(t_all,iso,sex,age) Share of population which is physically inactive (1) diff --git a/modules/09_drivers/aug17/input.gms b/modules/09_drivers/aug17/input.gms index 627d78607b..490be58bdc 100644 --- a/modules/09_drivers/aug17/input.gms +++ b/modules/09_drivers/aug17/input.gms @@ -23,12 +23,12 @@ parameters sm_fix_cc year until which all parameters affected by cc are fixed to historical values (year) / 2025 / ; -table f09_gdp_ppp_iso(t_all,iso,pop_gdp_scen09) Income in purchasing power parity (mio. USD05PPP per yr) +table f09_gdp_ppp_iso(t_all,iso,pop_gdp_scen09) Income in purchasing power parity (mio. USD17PPP per yr) $ondelim $include "./modules/09_drivers/input/f09_gdp_ppp_iso.csv" $offdelim; -table f09_gdp_mer_iso(t_all,iso,pop_gdp_scen09) Income in market exchange rates (mio. USD05MER per yr) +table f09_gdp_mer_iso(t_all,iso,pop_gdp_scen09) Income in market exchange rates (mio. USD17MER per yr) $ondelim $include "./modules/09_drivers/input/f09_gdp_mer_iso.csv" $offdelim; @@ -52,3 +52,10 @@ table f09_physical_inactivity(t_all,iso,pop_gdp_scen09,sex,age) Share of populat $ondelim $include "./modules/09_drivers/input/f09_physical_inactivity.cs3" $offdelim; + +parameter fm_gdp_defl_ppp(iso) GDP deflator +/ +$ondelim +$include "./modules/09_drivers/input/fm_gdp_defl_ppp.cs4" +$offdelim +/; diff --git a/modules/09_drivers/input/files b/modules/09_drivers/input/files index 752a896349..cac0468831 100644 --- a/modules/09_drivers/input/files +++ b/modules/09_drivers/input/files @@ -6,3 +6,4 @@ f09_pop_iso.csv f09_urban_iso.csv f09_demography.cs3 f09_physical_inactivity.cs3 +fm_gdp_defl_ppp.cs4 diff --git a/modules/10_land/landmatrix_dec18/declarations.gms b/modules/10_land/landmatrix_dec18/declarations.gms index 8a7737a301..172ec3792d 100644 --- a/modules/10_land/landmatrix_dec18/declarations.gms +++ b/modules/10_land/landmatrix_dec18/declarations.gms @@ -19,7 +19,7 @@ positive variables vm_land(j,land) Land area of the different land types (mio. ha) vm_landexpansion(j,land) Land expansion (mio. ha) vm_landreduction(j,land) Land reduction (mio. ha) - vm_cost_land_transition(j) Costs for lu transitions (mio. USD05MER per yr) + vm_cost_land_transition(j) Costs for lu transitions (mio. USD17MER per yr) vm_lu_transitions(j,land_from,land_to) Land transitions between time steps (mio. ha) v10_balance_positive(j) Balance variable for land transitions (mio. ha) v10_balance_negative(j) Balance variable for land transitions (mio. ha) @@ -31,7 +31,7 @@ equations q10_transition_from(j,land_from) Land transition constraint from (mio. ha) q10_landexpansion(j,land_to) Land expansion constraint (mio. ha) q10_landreduction(j,land_from) Land reduction constraint (mio. ha) - q10_cost(j) Costs for lu transitions (mio. USD05MER per yr) + q10_cost(j) Costs for lu transitions (mio. USD17MER per yr) q10_landdiff Land difference constraint (mio. ha) ; @@ -41,7 +41,7 @@ parameters ov_land(t,j,land,type) Land area of the different land types (mio. ha) ov_landexpansion(t,j,land,type) Land expansion (mio. ha) ov_landreduction(t,j,land,type) Land reduction (mio. ha) - ov_cost_land_transition(t,j,type) Costs for lu transitions (mio. USD05MER per yr) + ov_cost_land_transition(t,j,type) Costs for lu transitions (mio. USD17MER per yr) ov_lu_transitions(t,j,land_from,land_to,type) Land transitions between time steps (mio. ha) ov10_balance_positive(t,j,type) Balance variable for land transitions (mio. ha) ov10_balance_negative(t,j,type) Balance variable for land transitions (mio. ha) @@ -50,7 +50,7 @@ parameters oq10_transition_from(t,j,land_from,type) Land transition constraint from (mio. ha) oq10_landexpansion(t,j,land_to,type) Land expansion constraint (mio. ha) oq10_landreduction(t,j,land_from,type) Land reduction constraint (mio. ha) - oq10_cost(t,j,type) Costs for lu transitions (mio. USD05MER per yr) + oq10_cost(t,j,type) Costs for lu transitions (mio. USD17MER per yr) oq10_landdiff(t,type) Land difference constraint (mio. ha) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/10_land/landmatrix_dec18/input.gms b/modules/10_land/landmatrix_dec18/input.gms index 092ae72b41..d0c305c988 100644 --- a/modules/10_land/landmatrix_dec18/input.gms +++ b/modules/10_land/landmatrix_dec18/input.gms @@ -6,7 +6,7 @@ *** | Contact: magpie@pik-potsdam.de scalars - s10_cost_balance Artificial cost for balance variable (USD05MER per ha) / 1e+06 / + s10_cost_balance Artificial cost for balance variable (USD17MER per ha) / 1e+06 / ; table f10_land(t_ini10,j,land) Different land type areas (mio. ha) diff --git a/modules/10_land/landmatrix_dec18/scaling.gms b/modules/10_land/landmatrix_dec18/scaling.gms index 7cf3630df2..3db0837364 100644 --- a/modules/10_land/landmatrix_dec18/scaling.gms +++ b/modules/10_land/landmatrix_dec18/scaling.gms @@ -6,3 +6,5 @@ *** | Contact: magpie@pik-potsdam.de vm_landdiff.scale = 10e3; +v10_balance_positive.scale(j) = 10e-10; +v10_balance_negative.scale(j) = 10e-10; diff --git a/modules/11_costs/default/declarations.gms b/modules/11_costs/default/declarations.gms index fd1a7dba6a..f118c86d89 100644 --- a/modules/11_costs/default/declarations.gms +++ b/modules/11_costs/default/declarations.gms @@ -6,20 +6,20 @@ *** | Contact: magpie@pik-potsdam.de variables - vm_cost_glo Total costs of production (mio. USD05MER per yr) - v11_cost_reg(i) Regional costs (mio. USD05MER per yr) + vm_cost_glo Total costs of production (mio. USD17MER per yr) + v11_cost_reg(i) Regional costs (mio. USD17MER per yr) ; equations - q11_cost_glo Objective function (mio. USD05MER per yr) - q11_cost_reg(i) Regional cost constraint (mio. USD05MER per yr) + q11_cost_glo Objective function (mio. USD17MER per yr) + q11_cost_reg(i) Regional cost constraint (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_glo(t,type) Total costs of production (mio. USD05MER per yr) - ov11_cost_reg(t,i,type) Regional costs (mio. USD05MER per yr) - oq11_cost_glo(t,type) Objective function (mio. USD05MER per yr) - oq11_cost_reg(t,i,type) Regional cost constraint (mio. USD05MER per yr) + ov_cost_glo(t,type) Total costs of production (mio. USD17MER per yr) + ov11_cost_reg(t,i,type) Regional costs (mio. USD17MER per yr) + oq11_cost_glo(t,type) Objective function (mio. USD17MER per yr) + oq11_cost_reg(t,i,type) Regional cost constraint (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/13_tc/endo_jan22/declarations.gms b/modules/13_tc/endo_jan22/declarations.gms index b3b04bc8fa..dd653afdc9 100644 --- a/modules/13_tc/endo_jan22/declarations.gms +++ b/modules/13_tc/endo_jan22/declarations.gms @@ -7,33 +7,33 @@ positive variable vm_tau(h,tautype) Agricultural land use intensity tau (1) - vm_tech_cost(i) Total Annuitized costs of TC (mio. USD05PPP per yr) - v13_cost_tc(i,tautype) Technical change costs per region (mio. USD05PPP) - v13_tech_cost(i,tautype) Annuitized costs of TC for crops and pasture (mio. USD05PPP per yr) + vm_tech_cost(i) Total Annuitized costs of TC (mio. USD17MER per yr) + v13_cost_tc(i,tautype) Technical change costs per region (mio. USD17MER) + v13_tech_cost(i,tautype) Annuitized costs of TC for crops and pasture (mio. USD17MER per yr) ; equations - q13_tech_cost(i, tautype) Total annuitized costs for TC (mio. USD05PPP) - q13_cost_tc(i, tautype) Costs for TC (mio. USD05PPP per yr) - q13_tech_cost_sum(i) Total Total annuitized costs for TC (mio. USD05PPP per yr) + q13_tech_cost(i, tautype) Total annuitized costs for TC (mio. USD17MER) + q13_cost_tc(i, tautype) Costs for TC (mio. USD17MER per yr) + q13_tech_cost_sum(i) Total Total annuitized costs for TC (mio. USD17MER per yr) ; parameters pc13_land(i, tautype) Crop and grass land area per region (mio ha) pcm_tau(h, tautype) Tau factor of the previous time step (1) pc13_tcguess(h, tautype) Guess for annual tc rates in the next time step (1) - i13_tc_factor(t) Regression factor (USD05PPP per ha) + i13_tc_factor(t) Regression factor (USD17MER per ha) i13_tc_exponent(t) Regression exponent (1) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_tau(t,h,tautype,type) Agricultural land use intensity tau (1) - ov_tech_cost(t,i,type) Total Annuitized costs of TC (mio. USD05PPP per yr) - ov13_cost_tc(t,i,tautype,type) Technical change costs per region (mio. USD05PPP) - ov13_tech_cost(t,i,tautype,type) Annuitized costs of TC for crops and pasture (mio. USD05PPP per yr) - oq13_tech_cost(t,i,tautype,type) Total annuitized costs for TC (mio. USD05PPP) - oq13_cost_tc(t,i,tautype,type) Costs for TC (mio. USD05PPP per yr) - oq13_tech_cost_sum(t,i,type) Total Total annuitized costs for TC (mio. USD05PPP per yr) + ov_tech_cost(t,i,type) Total Annuitized costs of TC (mio. USD17MER per yr) + ov13_cost_tc(t,i,tautype,type) Technical change costs per region (mio. USD17MER) + ov13_tech_cost(t,i,tautype,type) Annuitized costs of TC for crops and pasture (mio. USD17MER per yr) + oq13_tech_cost(t,i,tautype,type) Total annuitized costs for TC (mio. USD17MER) + oq13_cost_tc(t,i,tautype,type) Costs for TC (mio. USD17MER per yr) + oq13_tech_cost_sum(t,i,type) Total Total annuitized costs for TC (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/13_tc/endo_jan22/input.gms b/modules/13_tc/endo_jan22/input.gms index 67867ebe2e..f9a37ab622 100644 --- a/modules/13_tc/endo_jan22/input.gms +++ b/modules/13_tc/endo_jan22/input.gms @@ -27,7 +27,7 @@ $offdelim $setglobal c13_tccost medium -table f13_tc_factor(t_all,scen13) Regression factor (USD05PPP per ha) +table f13_tc_factor(t_all,scen13) Regression factor (USD17MER per ha) $ondelim $include "./modules/13_tc/input/f13_tc_factor.cs3" $offdelim diff --git a/modules/13_tc/exo/declarations.gms b/modules/13_tc/exo/declarations.gms index 3309d3dc41..969660738f 100644 --- a/modules/13_tc/exo/declarations.gms +++ b/modules/13_tc/exo/declarations.gms @@ -7,21 +7,21 @@ positive variable vm_tau(h,tautype) Agricultural land use intensity tau (1) - vm_tech_cost(i) Costs of TC (mio. USD05PPP per yr) + vm_tech_cost(i) Costs of TC (mio. USD17MER per yr) ; parameters - p13_cost_tc(i,tautype) Technical change costs per region (mio. USD05PPP) + p13_cost_tc(i,tautype) Technical change costs per region (mio. USD17MER) pc13_land(i,tautype) Crop and grass land area per region (mio ha) pcm_tau(h,tautype) Tau factor of the previous time step (1) - i13_tc_factor(t) Regression factor (USD05PPP per ha) + i13_tc_factor(t) Regression factor (USD17MER per ha) i13_tc_exponent(t) Regression exponent (1) - p13_tech_cost(i,tautype) Annuitized costs of TC for crops and pasture (mio. USD05PPP per yr) + p13_tech_cost(i,tautype) Annuitized costs of TC for crops and pasture (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_tau(t,h,tautype,type) Agricultural land use intensity tau (1) - ov_tech_cost(t,i,type) Costs of TC (mio. USD05PPP per yr) + ov_tech_cost(t,i,type) Costs of TC (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/13_tc/exo/input.gms b/modules/13_tc/exo/input.gms index bfabfea188..f5743743e1 100644 --- a/modules/13_tc/exo/input.gms +++ b/modules/13_tc/exo/input.gms @@ -15,7 +15,7 @@ $offdelim $setglobal c13_tccost medium -table f13_tc_factor(t_all,scen13) Regression factor (USD05PPP per ha) +table f13_tc_factor(t_all,scen13) Regression factor (USD17MER per ha) $ondelim $include "./modules/13_tc/input/f13_tc_factor.cs3" $offdelim diff --git a/modules/15_food/anthro_iso_jun22/declarations.gms b/modules/15_food/anthro_iso_jun22/declarations.gms index 07f5ef4621..7d9fc7a1f9 100644 --- a/modules/15_food/anthro_iso_jun22/declarations.gms +++ b/modules/15_food/anthro_iso_jun22/declarations.gms @@ -17,8 +17,8 @@ positive variables *** #### Food Demand Model equations - q15_aim Objective function of food demand model (mio. USD05PPP) - q15_budget(iso) Household budget constraint (USD05PPP per cap per day) + q15_aim Objective function of food demand model (mio. USD17PPP) + q15_budget(iso) Household budget constraint (USD17PPP per cap per day) q15_regr_bmi_shr(iso,sex,agegroup15,bmi_tree15) Estimates regression parameters for BMI regression shares (1) q15_bmi_shr_verylow(iso,sex,agegroup15) Estimates BMI share for population groups with low BMI (1) @@ -43,8 +43,8 @@ positive variables v15_kcal_regr(iso,kfo) Uncalibrated regression estimates of calorie demand (kcal per cap per day) v15_kcal_regr_total(iso) Uncalibrated regression estimates of total per cap calories (kcal per cap per day) v15_demand_regr(iso, regr15) Uncalibrated regression estimates of kcal shares (1) - v15_income_pc_real_ppp_iso(iso) Real income per cap (USD05PPP per cap) - v15_income_balance(iso) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD05PPP per cap per yr) + v15_income_pc_real_ppp_iso(iso) Real income per cap (USD17PPP per cap) + v15_income_balance(iso) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD17PPP per cap per yr) v15_kcal_intake_total_regr(iso) Food intake (kcal per cap per day) v15_regr_overgroups(iso,sex,agegroup15,bmi_tree15) Hierarchical tree parameter regressions (1) v15_bmi_shr_regr(iso,sex,age,bmi_group15) Uncalibrated share of population groups belonging to a certain BMI group (1) @@ -52,7 +52,7 @@ positive variables ; variables - v15_objective Objective term (USD05PPP) + v15_objective Objective term (USD17PPP) ; scalars @@ -80,8 +80,8 @@ parameters p15_exo_food_scenario_fader(t_all) Exogenous diet scenario fader (1) * prices - p15_prices_kcal(t,iso,kfo,iter15) Prices from MAgPIE after optimization (USD05PPP per kcal) - i15_prices_initial_kcal(iso,kfo) Initial prices that capture the approximate level of prices in 1961-2010 (USD05PPP per kcal) + p15_prices_kcal(t,iso,kfo,iter15) Prices from MAgPIE after optimization (USD17PPP per kcal) + i15_prices_initial_kcal(iso,kfo) Initial prices that capture the approximate level of prices in 1961-2010 (USD17PPP per kcal) * anthropometrics p15_bodyheight(t,iso,sex,age,estimates15) Body height (cm per cap) @@ -179,7 +179,7 @@ parameters p15_country_dummy(iso) Dummy parameter indicating whether country is affected by diet scenarios (1) * calculate diet iteration breakpoint - p15_income_pc_real_ppp(t,i) Regional per capita income after price shock on regional level (USD05PPP per capita) + p15_income_pc_real_ppp(t,i) Regional per capita income after price shock on regional level (USD17PPP per capita) p15_delta_income(t,i,iter15) Regional change in per capita income due to price shock on regional level (1) ; @@ -235,16 +235,16 @@ parameters ov15_kcal_regr(t,iso,kfo,type) Uncalibrated regression estimates of calorie demand (kcal per cap per day) ov15_kcal_regr_total(t,iso,type) Uncalibrated regression estimates of total per cap calories (kcal per cap per day) ov15_demand_regr(t,iso,regr15,type) Uncalibrated regression estimates of kcal shares (1) - ov15_income_pc_real_ppp_iso(t,iso,type) Real income per cap (USD05PPP per cap) - ov15_income_balance(t,iso,type) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD05PPP per cap per yr) + ov15_income_pc_real_ppp_iso(t,iso,type) Real income per cap (USD17PPP per cap) + ov15_income_balance(t,iso,type) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD17PPP per cap per yr) ov15_kcal_intake_total_regr(t,iso,type) Food intake (kcal per cap per day) ov15_regr_overgroups(t,iso,sex,agegroup15,bmi_tree15,type) Hierarchical tree parameter regressions (1) ov15_bmi_shr_regr(t,iso,sex,age,bmi_group15,type) Uncalibrated share of population groups belonging to a certain BMI group (1) ov15_bmi_shr_overgroups(t,iso,sex,agegroup15,bmi_group15,type) Uncalibrated share of population groups belonging to a certain BMI group (1) - ov15_objective(t,type) Objective term (USD05PPP) + ov15_objective(t,type) Objective term (USD17PPP) oq15_food_demand(t,i,kfo,type) Food demand (mio. kcal) - oq15_aim(t,type) Objective function of food demand model (mio. USD05PPP) - oq15_budget(t,iso,type) Household budget constraint (USD05PPP per cap per day) + oq15_aim(t,type) Objective function of food demand model (mio. USD17PPP) + oq15_budget(t,iso,type) Household budget constraint (USD17PPP per cap per day) oq15_regr_bmi_shr(t,iso,sex,agegroup15,bmi_tree15,type) Estimates regression parameters for BMI regression shares (1) oq15_bmi_shr_verylow(t,iso,sex,agegroup15,type) Estimates BMI share for population groups with low BMI (1) oq15_bmi_shr_low(t,iso,sex,agegroup15,type) Estimates BMI share for population groups with very low BMI (1) diff --git a/modules/15_food/anthro_iso_jun22/equations.gms b/modules/15_food/anthro_iso_jun22/equations.gms index 7094915a69..2ae2d6014b 100644 --- a/modules/15_food/anthro_iso_jun22/equations.gms +++ b/modules/15_food/anthro_iso_jun22/equations.gms @@ -72,8 +72,8 @@ q15_regr_bmi_shr(iso,sex,agegroup15,bmi_tree15) .. v15_regr_overgroups(iso,sex,agegroup15,bmi_tree15) =e= i15_bmi_intercept(sex,agegroup15,bmi_tree15) - + (i15_bmi_saturation(sex,agegroup15,bmi_tree15) * v15_income_pc_real_ppp_iso(iso)) - / (i15_bmi_halfsat(sex,agegroup15,bmi_tree15) + v15_income_pc_real_ppp_iso(iso)); + + (i15_bmi_saturation(sex,agegroup15,bmi_tree15) * (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso))) + / (i15_bmi_halfsat(sex,agegroup15,bmi_tree15) + (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso))); *' Then, these regression shares are applied to parameterize the *' hierarchical tree structure: @@ -169,8 +169,8 @@ q15_regr_kcal(iso) .. q15_regr(iso, regr15) .. v15_demand_regr(iso, regr15) =e= i15_dem_intercept(iso,regr15) - + (i15_dem_saturation(iso,regr15) * v15_income_pc_real_ppp_iso(iso)) - / (i15_dem_halfsat(iso,regr15) + v15_income_pc_real_ppp_iso(iso)**i15_dem_nonsat(iso,regr15)); + + (i15_dem_saturation(iso,regr15) * (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso))) + / (i15_dem_halfsat(iso,regr15) + (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso) )**i15_dem_nonsat(iso,regr15)); *' In the subsequent equations, those parameters *' are used to determine the dietary composition using a hierachical tree: diff --git a/modules/15_food/anthro_iso_jun22/input.gms b/modules/15_food/anthro_iso_jun22/input.gms index e890b03251..23f7215e44 100644 --- a/modules/15_food/anthro_iso_jun22/input.gms +++ b/modules/15_food/anthro_iso_jun22/input.gms @@ -163,7 +163,7 @@ $include "./modules/15_food/input/f15_intake_pc_observed_iso.cs3" $offdelim; -parameter f15_prices_initial(kall) Food prices in initialization period (USD05MER per t DM) +parameter f15_prices_initial(kall) Food prices in initialization period (USD17MER per t DM) / $ondelim $include "./modules/15_food/input/f15_prices_initial.csv" diff --git a/modules/15_food/anthropometrics_jan18/declarations.gms b/modules/15_food/anthropometrics_jan18/declarations.gms index 9ba90a94b5..9bd4ef6563 100644 --- a/modules/15_food/anthropometrics_jan18/declarations.gms +++ b/modules/15_food/anthropometrics_jan18/declarations.gms @@ -20,8 +20,8 @@ positive variables equations - q15_aim Objective function of food demand model (mio. USD05PPP) - q15_budget(iso) Household budget constraint (USD05PPP per cap per day) + q15_aim Objective function of food demand model (mio. USD17PPP) + q15_budget(iso) Household budget constraint (USD17PPP per cap per day) q15_regr_bmi_shr(iso,sex,agegroup15,bmi_tree15) Estimates regression parameters for BMI regression shares (1) q15_bmi_shr_verylow(iso,sex,agegroup15) Estimates BMI share for population groups with low BMI (1) @@ -47,8 +47,8 @@ positive variables v15_kcal_regr(iso,kfo) Uncalibrated regression estimates of calorie demand (kcal per cap per day) v15_kcal_regr_total(iso) Uncalibrated regression estimates of total per cap calories (kcal per cap per day) v15_demand_regr(iso, regr15) Uncalibrated regression estimates of kcal shares (1) - v15_income_pc_real_ppp_iso(iso) Real income per cap (USD05PPP per cap) - v15_income_balance(iso) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD05PPP per cap per yr) + v15_income_pc_real_ppp_iso(iso) Real income per cap (USD17PPP per cap) + v15_income_balance(iso) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD17PPP per cap per yr) v15_kcal_intake_total_regr(iso) Food intake (kcal per cap per day) v15_regr_overgroups(iso,sex,agegroup15,bmi_tree15) Hierarchical tree parameter regressions (1) v15_bmi_shr_regr(iso,sex,age,bmi_group15) Uncalibrated share of population groups belonging to a certain BMI group (1) @@ -56,7 +56,7 @@ positive variables ; variables - v15_objective Objective term (USD05PPP) + v15_objective Objective term (USD17PPP) ; scalars @@ -83,8 +83,8 @@ parameters p15_exo_food_scenario_fader(t_all) Exogenous diet scenario fader (1) * prices - p15_prices_kcal(t,iso,kfo,iter15) Prices from MAgPIE after optimization (USD05PPP per kcal) - i15_prices_initial_kcal(iso,kfo) Initial prices that capture the approximate level of prices in 1961-2010 (USD05PPP per kcal) + p15_prices_kcal(t,iso,kfo,iter15) Prices from MAgPIE after optimization (USD17PPP per kcal) + i15_prices_initial_kcal(iso,kfo) Initial prices that capture the approximate level of prices in 1961-2010 (USD17PPP per kcal) * anthropometrics o15_bmi_shr(t,iso,sex,age,bmi_group15) Calibrated estimates BMI share for population groups (1) @@ -176,7 +176,7 @@ parameters p15_foodscen_region_shr(t_all,i) Weighted share of region with regards to diet scenario of countries (1) * calculate diet iteration breakpoint - p15_income_pc_real_ppp(t,i) Regional per capita income after price shock on regional level (USD05PPP per capita) + p15_income_pc_real_ppp(t,i) Regional per capita income after price shock on regional level (USD17PPP per capita) p15_delta_income(t,i,iter15) Regional change in per capita income due to price shock on regional level (1) ; @@ -236,16 +236,16 @@ parameters ov15_kcal_regr(t,iso,kfo,type) Uncalibrated regression estimates of calorie demand (kcal per cap per day) ov15_kcal_regr_total(t,iso,type) Uncalibrated regression estimates of total per cap calories (kcal per cap per day) ov15_demand_regr(t,iso,regr15,type) Uncalibrated regression estimates of kcal shares (1) - ov15_income_pc_real_ppp_iso(t,iso,type) Real income per cap (USD05PPP per cap) - ov15_income_balance(t,iso,type) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD05PPP per cap per yr) + ov15_income_pc_real_ppp_iso(t,iso,type) Real income per cap (USD17PPP per cap) + ov15_income_balance(t,iso,type) Balance variable to balance cases in which reduction in income is larger than the per capita GDP (USD17PPP per cap per yr) ov15_kcal_intake_total_regr(t,iso,type) Food intake (kcal per cap per day) ov15_regr_overgroups(t,iso,sex,agegroup15,bmi_tree15,type) Hierarchical tree parameter regressions (1) ov15_bmi_shr_regr(t,iso,sex,age,bmi_group15,type) Uncalibrated share of population groups belonging to a certain BMI group (1) ov15_bmi_shr_overgroups(t,iso,sex,agegroup15,bmi_group15,type) Uncalibrated share of population groups belonging to a certain BMI group (1) - ov15_objective(t,type) Objective term (USD05PPP) + ov15_objective(t,type) Objective term (USD17PPP) oq15_food_demand(t,i,kfo,type) Food demand (mio. kcal) - oq15_aim(t,type) Objective function of food demand model (mio. USD05PPP) - oq15_budget(t,iso,type) Household budget constraint (USD05PPP per cap per day) + oq15_aim(t,type) Objective function of food demand model (mio. USD17PPP) + oq15_budget(t,iso,type) Household budget constraint (USD17PPP per cap per day) oq15_regr_bmi_shr(t,iso,sex,agegroup15,bmi_tree15,type) Estimates regression parameters for BMI regression shares (1) oq15_bmi_shr_verylow(t,iso,sex,agegroup15,type) Estimates BMI share for population groups with low BMI (1) oq15_bmi_shr_low(t,iso,sex,agegroup15,type) Estimates BMI share for population groups with very low BMI (1) diff --git a/modules/15_food/anthropometrics_jan18/equations.gms b/modules/15_food/anthropometrics_jan18/equations.gms index 7094915a69..0506f61ff2 100644 --- a/modules/15_food/anthropometrics_jan18/equations.gms +++ b/modules/15_food/anthropometrics_jan18/equations.gms @@ -72,8 +72,8 @@ q15_regr_bmi_shr(iso,sex,agegroup15,bmi_tree15) .. v15_regr_overgroups(iso,sex,agegroup15,bmi_tree15) =e= i15_bmi_intercept(sex,agegroup15,bmi_tree15) - + (i15_bmi_saturation(sex,agegroup15,bmi_tree15) * v15_income_pc_real_ppp_iso(iso)) - / (i15_bmi_halfsat(sex,agegroup15,bmi_tree15) + v15_income_pc_real_ppp_iso(iso)); + + (i15_bmi_saturation(sex,agegroup15,bmi_tree15) * (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso) )) + / (i15_bmi_halfsat(sex,agegroup15,bmi_tree15) + (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso) )); *' Then, these regression shares are applied to parameterize the *' hierarchical tree structure: @@ -169,8 +169,8 @@ q15_regr_kcal(iso) .. q15_regr(iso, regr15) .. v15_demand_regr(iso, regr15) =e= i15_dem_intercept(iso,regr15) - + (i15_dem_saturation(iso,regr15) * v15_income_pc_real_ppp_iso(iso)) - / (i15_dem_halfsat(iso,regr15) + v15_income_pc_real_ppp_iso(iso)**i15_dem_nonsat(iso,regr15)); + + (i15_dem_saturation(iso,regr15) * (v15_income_pc_real_ppp_iso(iso) * fm_gdp_defl_ppp(iso))) + / (i15_dem_halfsat(iso,regr15) + (v15_income_pc_real_ppp_iso(iso) * fm_gp_defl_ppp(iso))**i15_dem_nonsat(iso,regr15)); *' In the subsequent equations, those parameters *' are used to determine the dietary composition using a hierachical tree: diff --git a/modules/15_food/anthropometrics_jan18/input.gms b/modules/15_food/anthropometrics_jan18/input.gms index b24efd5ebd..f51b796b63 100644 --- a/modules/15_food/anthropometrics_jan18/input.gms +++ b/modules/15_food/anthropometrics_jan18/input.gms @@ -142,7 +142,7 @@ $include "./modules/15_food/input/f15_intake_pc_observed_iso.cs3" $offdelim; -parameter f15_prices_initial(kall) Food prices in initialization period (USD05MER per t DM) +parameter f15_prices_initial(kall) Food prices in initialization period (USD17MER per t DM) / $ondelim $include "./modules/15_food/input/f15_prices_initial.csv" diff --git a/modules/18_residues/flexcluster_jul23/declarations.gms b/modules/18_residues/flexcluster_jul23/declarations.gms index 6a88c3208c..d4b62c1c20 100644 --- a/modules/18_residues/flexcluster_jul23/declarations.gms +++ b/modules/18_residues/flexcluster_jul23/declarations.gms @@ -18,7 +18,7 @@ positive variables vm_res_ag_burn(i,kcr,attributes) Regional residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) vm_res_recycling(i,npk) Residues recycled to croplands in respective nutrients Nr P K units (mio. tX) - vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD05MER per yr) + vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD17MER per yr) ; equations @@ -36,7 +36,7 @@ equations q18_res_recycling_nr(i) Nutrient recycling of reaactive nitrogen (mio. tNr) q18_res_recycling_pk(i,pk18) Nutrient recycling of phosphorus and potash (mio. tX) - q18_cost_prod_res(i,kres) Production costs of harvesting crop residues (mio. USD05MER) + q18_cost_prod_res(i,kres) Production costs of harvesting crop residues (mio. USD17MER) q18_prod_res_reg(i,kall) Regional production of residues (mio. tDM) @@ -57,7 +57,7 @@ parameters ov18_res_ag_recycling(t,i,kcr,attributes,type) Recycling of crop residues to soils in respective attribute units DM GJ Nr P K WM C (mio. tX) ov_res_ag_burn(t,i,kcr,attributes,type) Regional residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) ov_res_recycling(t,i,npk,type) Residues recycled to croplands in respective nutrients Nr P K units (mio. tX) - ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD05MER per yr) + ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD17MER per yr) oq18_prod_res_ag_clust(t,j,kcr,type) Cluster-level production constraint of aboveground residues (mio. tDM) oq18_prod_res_ag_reg(t,i,kcr,attributes,type) Regional production constraint of aboveground residues (mio. tDM) oq18_prod_res_bg_clust(t,i,kcr,dm_nr,type) Cluster-level production constraint of belowground residues (mio. tDM) @@ -68,7 +68,7 @@ parameters oq18_translate(t,j,kres,attributes,type) Transformation of the multiple crop residues into supply balance crop residues in respective attribute units DM GJ Nr P K WM C (mio. tX) oq18_res_recycling_nr(t,i,type) Nutrient recycling of reaactive nitrogen (mio. tNr) oq18_res_recycling_pk(t,i,pk18,type) Nutrient recycling of phosphorus and potash (mio. tX) - oq18_cost_prod_res(t,i,kres,type) Production costs of harvesting crop residues (mio. USD05MER) + oq18_cost_prod_res(t,i,kres,type) Production costs of harvesting crop residues (mio. USD17MER) oq18_prod_res_reg(t,i,kall,type) Regional production of residues (mio. tDM) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/18_residues/flexcluster_jul23/equations.gms b/modules/18_residues/flexcluster_jul23/equations.gms index cd54aa85ad..8ab10fe894 100644 --- a/modules/18_residues/flexcluster_jul23/equations.gms +++ b/modules/18_residues/flexcluster_jul23/equations.gms @@ -129,14 +129,9 @@ + vm_res_ag_burn(i2,kcr,pk18) ); -*' Costs of residues production are determined as factor costs per ton -*' assuming 15 USD per ton, using the lower range from -*' [this source](hwww1.agric.gov.ab.ca/$Department/deptdocs.nsf/All/faq7514), -*' 10USD baling costs per large round bale plus 2USD pro bale stocking and hauling, -*' 1 large round bale is approximately 500 kg, resulting in 24USD per ton, -*' for developing prices see [here](citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.5823&rep=rep1&type=pdf). -*' Tha calcuated factor costs per ton are therefore 24 for `res_cereals`, `res_fibrous` -*' and `res_nonfibrous`. +*' Costs of residue harvest are based on straw baling and hauling from +*' Budynski, Stephanie. 2020. Straw Manufacturing in Alberta (@budynski_straw_2020), +*' using the lower range of the US costs. q18_cost_prod_res(i2,kres) .. vm_cost_prod_kres(i2,kres) diff --git a/modules/18_residues/flexcluster_jul23/input.gms b/modules/18_residues/flexcluster_jul23/input.gms index 2f28619264..a5923f2aa4 100644 --- a/modules/18_residues/flexcluster_jul23/input.gms +++ b/modules/18_residues/flexcluster_jul23/input.gms @@ -41,7 +41,7 @@ $include "./modules/18_residues/input/f18_res_combust_eff.cs4" $offdelim /; -parameter f18_fac_req_kres(kres) Factor requirements (USD05MER per tDM) +parameter f18_fac_req_kres(kres) Factor requirements (USD17MER per tDM) / $ondelim $include "./modules/18_residues/flexcluster_jul23/input/f18_fac_req_kres.csv" diff --git a/modules/18_residues/flexreg_apr16/declarations.gms b/modules/18_residues/flexreg_apr16/declarations.gms index 432df99796..a84eac5eaa 100644 --- a/modules/18_residues/flexreg_apr16/declarations.gms +++ b/modules/18_residues/flexreg_apr16/declarations.gms @@ -14,7 +14,7 @@ positive variables v18_res_ag_recycling(i,kcr,attributes) Recylcing of crop residues to soils in respective attribute units DM GJ Nr P K WM C (mio. tX) vm_res_ag_burn(i,kcr,attributes) Residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) vm_res_recycling(i,npk) Residues recycled to croplands in respective nutrients Nr P K units (mio. tX) - vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD05MER per yr) + vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD17MER per yr) ; equations @@ -29,7 +29,7 @@ equations q18_res_recycling_nr(i) Nutrient recycling of reaactive nitrogen (mio. tNr) q18_res_recycling_pk(i,pk18) Nutrient recycling of phosphorus and potash (mio. tX) - q18_cost_prod_res(i,kres) Production costs of harvesting crop residues (mio. USD05MER) + q18_cost_prod_res(i,kres) Production costs of harvesting crop residues (mio. USD17MER) ; @@ -46,7 +46,7 @@ parameters ov18_res_ag_recycling(t,i,kcr,attributes,type) Recylcing of crop residues to soils in respective attribute units DM GJ Nr P K WM C (mio. tX) ov_res_ag_burn(t,i,kcr,attributes,type) Residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) ov_res_recycling(t,i,npk,type) Residues recycled to croplands in respective nutrients Nr P K units (mio. tX) - ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD05MER per yr) + ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD17MER per yr) oq18_prod_res_ag_reg(t,i,kcr,attributes,type) Production constraint of aboveground residues (mio. tDM) oq18_prod_res_bg_reg(t,i,kcr,dm_nr,type) Production constraint of belowground residues (mio. tDM) oq18_res_field_balance(t,i,kcr,attributes,type) Calculation of the residues amount recycled to soils (mio. tDM) @@ -55,7 +55,7 @@ parameters oq18_prod_res_cell(t,j,kres,type) Allows for distribution of residues to cellular level (mio. tDM) oq18_res_recycling_nr(t,i,type) Nutrient recycling of reaactive nitrogen (mio. tNr) oq18_res_recycling_pk(t,i,pk18,type) Nutrient recycling of phosphorus and potash (mio. tX) - oq18_cost_prod_res(t,i,kres,type) Production costs of harvesting crop residues (mio. USD05MER) + oq18_cost_prod_res(t,i,kres,type) Production costs of harvesting crop residues (mio. USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/18_residues/flexreg_apr16/equations.gms b/modules/18_residues/flexreg_apr16/equations.gms index 70d151afd8..8d9d7e0c30 100644 --- a/modules/18_residues/flexreg_apr16/equations.gms +++ b/modules/18_residues/flexreg_apr16/equations.gms @@ -107,14 +107,9 @@ + vm_res_ag_burn(i2,kcr,pk18) ); -*' Costs of residues production are determined as factor costs per ton -*' assuming 15 USD per ton, using the lower range from -*' [this source](hwww1.agric.gov.ab.ca/$Department/deptdocs.nsf/All/faq7514), -*' 10USD baling costs per large round bale plus 2USD pro bale stocking and hauling, -*' 1 large round bale is approximately 500 kg, resulting in 24USD per ton, -*' for developing prices see [here](citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.557.5823&rep=rep1&type=pdf). -*' Tha calcuated factor costs per ton are therefore 24 for `res_cereals`, `res_fibrous` -*' and `res_nonfibrous`. +*' Costs of residue harvest are based on straw baling and hauling from +*' Budynski, Stephanie. 2020. Straw Manufacturing in Alberta (@budynski_straw_2020), +*' using the lower range of the US costs. q18_cost_prod_res(i2,kres) .. vm_cost_prod_kres(i2,kres) diff --git a/modules/18_residues/flexreg_apr16/input.gms b/modules/18_residues/flexreg_apr16/input.gms index 1ee2c089fe..9ab7245ace 100644 --- a/modules/18_residues/flexreg_apr16/input.gms +++ b/modules/18_residues/flexreg_apr16/input.gms @@ -41,7 +41,7 @@ $include "./modules/18_residues/input/f18_res_combust_eff.cs4" $offdelim /; -parameter f18_fac_req_kres(kres) Factor requirements (USD05MER per tDM) +parameter f18_fac_req_kres(kres) Factor requirements (USD17MER per tDM) / $ondelim $include "./modules/18_residues/flexreg_apr16/input/f18_fac_req_kres.csv" diff --git a/modules/18_residues/off/declarations.gms b/modules/18_residues/off/declarations.gms index 8329f0d299..320ee7a062 100644 --- a/modules/18_residues/off/declarations.gms +++ b/modules/18_residues/off/declarations.gms @@ -11,7 +11,7 @@ positive variables vm_res_biomass_bg(i,kcr,dm_nr) production of belowground residues in each region (mio. tDM) vm_res_recycling(i,npk) residues recycled to croplands (mio tons nutrients) vm_res_ag_burn(i,kcr,attributes) Residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) - vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD05MER per yr) + vm_cost_prod_kres(i,kres) Production costs of harvesting crop residues (mio. USD17MER per yr) ; @@ -21,7 +21,7 @@ parameters ov_res_biomass_bg(t,i,kcr,dm_nr,type) production of belowground residues in each region (mio. tDM) ov_res_recycling(t,i,npk,type) residues recycled to croplands (mio tons nutrients) ov_res_ag_burn(t,i,kcr,attributes,type) Residues burned on fields in respective attribute units DM GJ Nr P K WM C (mio. tX) - ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD05MER per yr) + ov_cost_prod_kres(t,i,kres,type) Production costs of harvesting crop residues (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/20_processing/substitution_may21/declarations.gms b/modules/20_processing/substitution_may21/declarations.gms index 72d97ed3cf..8c4a5ed686 100644 --- a/modules/20_processing/substitution_may21/declarations.gms +++ b/modules/20_processing/substitution_may21/declarations.gms @@ -8,7 +8,7 @@ parameters i20_processing_shares(t_all,i,ksd,kpr) Shares of secondary products coming from a primary product (1) i20_processing_conversion_factors(t_all,processing20,ksd,kpr) Conversion factors of primary products into secondary products (1) - i20_processing_unitcosts(ksd,kpr) Costs of transforming x units kpr into 1 unit ksd (USD05MER per tDM) + i20_processing_unitcosts(ksd,kpr) Costs of transforming x units kpr into 1 unit ksd (USD17MER per tDM) ; @@ -17,11 +17,11 @@ positive variables v20_dem_processing(i,processing_subst20,kpr) Demand for processing use by process (mio. tDM per yr) v20_secondary_substitutes(i,ksd,kpr) Substitutes for inferior secondary products (mio. tDM per yr) vm_secondary_overproduction(i,kall,kpr) Overproduction of secondary couple products (mio. tDM per yr) - vm_cost_processing(i) Processing costs (mio. USD05MER per yr) + vm_cost_processing(i) Processing costs (mio. USD17MER per yr) ; variables - vm_processing_substitution_cost(i) Costs or benefits of substituting one product by another (mio. USD05MER per yr) + vm_processing_substitution_cost(i) Costs or benefits of substituting one product by another (mio. USD17MER per yr) ; equations @@ -33,7 +33,7 @@ equations q20_processing_substitution_brans(i) Substitution of brans by cereals (mio. tNr per yr) q20_processing_substitution_sugar(i) Substitution of molasses by sugar (mio. tDM per yr) q20_processing_substitution_protein(i) Substitution of protein products by other protein products (mio. tNr per yr) - q20_processing_costs(i) Processing costs (mio. USD05MER per yr) + q20_processing_costs(i) Processing costs (mio. USD17MER per yr) q20_substitution_utility_loss(i) Utility loss when one product has to be substituted by another (mio. t Nr per year) ; @@ -43,8 +43,8 @@ parameters ov20_dem_processing(t,i,processing_subst20,kpr,type) Demand for processing use by process (mio. tDM per yr) ov20_secondary_substitutes(t,i,ksd,kpr,type) Substitutes for inferior secondary products (mio. tDM per yr) ov_secondary_overproduction(t,i,kall,kpr,type) Overproduction of secondary couple products (mio. tDM per yr) - ov_cost_processing(t,i,type) Processing costs (mio. USD05MER per yr) - ov_processing_substitution_cost(t,i,type) Costs or benefits of substituting one product by another (mio. USD05MER per yr) + ov_cost_processing(t,i,type) Processing costs (mio. USD17MER per yr) + ov_processing_substitution_cost(t,i,type) Costs or benefits of substituting one product by another (mio. USD17MER per yr) oq20_processing(t,i,kpr,ksd,type) Processing equation (mio. tDM per yr) oq20_processing_aggregation_nocereals(t,i,kpr,type) Connecting processing activity to processing flows (mio. tDM per yr) oq20_processing_aggregation_cereals(t,i,kcereals20,type) Connecting processing activity to food use for milling (mio. tDM per yr) @@ -53,7 +53,7 @@ parameters oq20_processing_substitution_brans(t,i,type) Substitution of brans by cereals (mio. tNr per yr) oq20_processing_substitution_sugar(t,i,type) Substitution of molasses by sugar (mio. tDM per yr) oq20_processing_substitution_protein(t,i,type) Substitution of protein products by other protein products (mio. tNr per yr) - oq20_processing_costs(t,i,type) Processing costs (mio. USD05MER per yr) + oq20_processing_costs(t,i,type) Processing costs (mio. USD17MER per yr) oq20_substitution_utility_loss(t,i,type) Utility loss when one product has to be substituted by another (mio. t Nr per year) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/20_processing/substitution_may21/input.gms b/modules/20_processing/substitution_may21/input.gms index 65a320e6de..f4292d5a5e 100644 --- a/modules/20_processing/substitution_may21/input.gms +++ b/modules/20_processing/substitution_may21/input.gms @@ -22,12 +22,12 @@ $ondelim $include "./modules/20_processing/input/f20_processing_shares.cs3" $offdelim ; -table f20_processing_unitcosts(ksd,kpr) Costs of transforming x units kpr into 1 unit ksd (USD05MER per tDM) +table f20_processing_unitcosts(ksd,kpr) Costs of transforming x units kpr into 1 unit ksd (USD17MER per tDM) $ondelim $include "./modules/20_processing/input/f20_processing_unitcosts.cs3" $offdelim ; -table f20_quality_cost(ksd,kpr) Costs for difference in quality between secondary products from diverging origins (USD per tDM) +table f20_quality_cost(ksd,kpr) Costs for difference in quality between secondary products from diverging origins (USD17MER per tDM) $ondelim $include "./modules/20_processing/substitution_may21/input/f20_quality_cost.cs3" $offdelim ; @@ -42,7 +42,7 @@ $ondelim $include "./modules/20_processing/input/f20_scp_processing_shares.csv" $offdelim; -parameter f20_scp_unitcosts(scptype) Costs of production of one unit of SCP exclusive of feedstock costs (USD per tDM) +parameter f20_scp_unitcosts(scptype) Costs of production of one unit of SCP exclusive of feedstock costs (USD17MER per tDM) / $ondelim $include "./modules/20_processing/input/f20_scp_unitcosts.csv" diff --git a/modules/20_processing/substitution_may21/scaling.gms b/modules/20_processing/substitution_may21/scaling.gms index eeacde45a8..db58c9ae6f 100644 --- a/modules/20_processing/substitution_may21/scaling.gms +++ b/modules/20_processing/substitution_may21/scaling.gms @@ -5,5 +5,6 @@ *** | MAgPIE License Exception, version 1.0 (see LICENSE file). *** | Contact: magpie@pik-potsdam.de +vm_secondary_overproduction.scale(i,kall,kpr) = 10e-3; vm_cost_processing.scale(i) = 10e5; vm_processing_substitution_cost.scale(i) = 10e4; diff --git a/modules/21_trade/exo/declarations.gms b/modules/21_trade/exo/declarations.gms index 67b0151950..cb13b215e1 100644 --- a/modules/21_trade/exo/declarations.gms +++ b/modules/21_trade/exo/declarations.gms @@ -6,7 +6,7 @@ *** | Contact: magpie@pik-potsdam.de positive variables - vm_cost_trade(i) Regional trade costs (mio. USD05MER per yr) + vm_cost_trade(i) Regional trade costs (mio. USD17MER per yr) ; equations @@ -15,7 +15,7 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_trade(t,i,type) Regional trade costs (mio. USD05MER per yr) + ov_cost_trade(t,i,type) Regional trade costs (mio. USD17MER per yr) oq21_notrade(t,h,kall,type) Superregional production constraint of non-tradable commodities (mio. tDM per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/21_trade/free_apr16/declarations.gms b/modules/21_trade/free_apr16/declarations.gms index 811b4f5676..a13a97b6bb 100644 --- a/modules/21_trade/free_apr16/declarations.gms +++ b/modules/21_trade/free_apr16/declarations.gms @@ -7,12 +7,12 @@ parameters i21_trade_bal_reduction(t_all,k_trade) Trade balance reduction (1) - i21_trade_margin(h,k_trade) Trade margins (USD05MER per tDM) - i21_trade_tariff(h,k_trade) Trade tariffs (USD05MER per tDM) + i21_trade_margin(h,k_trade) Trade margins (USD17MER per tDM) + i21_trade_tariff(h,k_trade) Trade tariffs (USD17MER per tDM) ; positive variables - vm_cost_trade(i) Regional trade costs (mio. USD05MER per yr) + vm_cost_trade(i) Regional trade costs (mio. USD17MER per yr) ; equations @@ -22,7 +22,7 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_trade(t,i,type) Regional trade costs (mio. USD05MER per yr) + ov_cost_trade(t,i,type) Regional trade costs (mio. USD17MER per yr) oq21_trade_glo(t,k_trade,type) Global production constraint (mio. tDM per yr) oq21_notrade(t,h,k_notrade,type) Superregional production constraint of non-tradable commodities (mio. tDM per yr) ; diff --git a/modules/21_trade/input/files b/modules/21_trade/input/files index a2dc71b741..dbc4131c7f 100644 --- a/modules/21_trade/input/files +++ b/modules/21_trade/input/files @@ -4,7 +4,5 @@ f21_trade_export_share.cs3 f21_trade_balanceflow.cs3 f21_trade_margin.cs3 f21_trade_tariff.cs3 -f21_trade_tariff_export.cs3 -f21_trade_tariff_import.cs3 f21_trade_balance.cs3 f21_trade_bal_reduction.cs3 diff --git a/modules/21_trade/off/declarations.gms b/modules/21_trade/off/declarations.gms index 5488673ee2..a66f2d5dd9 100644 --- a/modules/21_trade/off/declarations.gms +++ b/modules/21_trade/off/declarations.gms @@ -6,7 +6,7 @@ *** | Contact: magpie@pik-potsdam.de positive variables - vm_cost_trade(i) Regional trade costs (mio. USD05MER per yr) + vm_cost_trade(i) Regional trade costs (mio. USD17MER per yr) ; equations @@ -15,7 +15,7 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_trade(t,i,type) Regional trade costs (mio. USD05MER per yr) + ov_cost_trade(t,i,type) Regional trade costs (mio. USD17MER per yr) oq21_notrade(t,h,kall,type) Superregional production constraint of non-tradable commodities (mio. tDM per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/21_trade/selfsuff_reduced/declarations.gms b/modules/21_trade/selfsuff_reduced/declarations.gms index 59bc20b4d9..fbc984e246 100644 --- a/modules/21_trade/selfsuff_reduced/declarations.gms +++ b/modules/21_trade/selfsuff_reduced/declarations.gms @@ -7,15 +7,15 @@ parameters i21_trade_bal_reduction(t_all,k_trade) Trade balance reduction (1) - i21_trade_margin(h,k_trade) Trade margins (USD05MER per tDM) - i21_trade_tariff(h,k_trade) Trade tariffs (USD05MER per tDM) + i21_trade_margin(h,k_trade) Trade margins (USD17MER per tDM) + i21_trade_tariff(h,k_trade) Trade tariffs (USD17MER per tDM) ; positive variables v21_excess_dem(k_trade) Global excess demand (mio. tDM per yr) v21_excess_prod(h,k_trade) Superregional excess production (mio. tDM per yr) - vm_cost_trade(i) Regional trade costs (mio. USD05MER per yr) - v21_cost_trade_reg(h,k_trade) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + vm_cost_trade(i) Regional trade costs (mio. USD17MER per yr) + v21_cost_trade_reg(h,k_trade) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) v21_import_for_feasibility(h,k_trade) Additional imports to maintain feasibility (mio. tDM per yr) ; @@ -26,16 +26,16 @@ equations q21_trade_reg_up(h,k_trade) Superregional trade balances i.e. maximum self-sufficiency ratio (1) q21_excess_dem(k_trade) Global excess demand (mio. tDM per yr) q21_excess_supply(h,k_trade) Superregional excess production (mio. tDM per yr) - q21_cost_trade(h) Superregional trade costs (mio. USD05MER per yr) - q21_cost_trade_reg(h,k_trade) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + q21_cost_trade(h) Superregional trade costs (mio. USD17MER per yr) + q21_cost_trade_reg(h,k_trade) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov21_excess_dem(t,k_trade,type) Global excess demand (mio. tDM per yr) ov21_excess_prod(t,h,k_trade,type) Superregional excess production (mio. tDM per yr) - ov_cost_trade(t,i,type) Regional trade costs (mio. USD05MER per yr) - ov21_cost_trade_reg(t,h,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + ov_cost_trade(t,i,type) Regional trade costs (mio. USD17MER per yr) + ov21_cost_trade_reg(t,h,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) ov21_import_for_feasibility(t,h,k_trade,type) Additional imports to maintain feasibility (mio. tDM per yr) oq21_trade_glo(t,k_trade,type) Global production constraint (mio. tDM per yr) oq21_notrade(t,h,k_notrade,type) Superregional production constraint of non-tradable commodities (mio. tDM per yr) @@ -43,7 +43,7 @@ parameters oq21_trade_reg_up(t,h,k_trade,type) Superregional trade balances i.e. maximum self-sufficiency ratio (1) oq21_excess_dem(t,k_trade,type) Global excess demand (mio. tDM per yr) oq21_excess_supply(t,h,k_trade,type) Superregional excess production (mio. tDM per yr) - oq21_cost_trade(t,h,type) Superregional trade costs (mio. USD05MER per yr) - oq21_cost_trade_reg(t,h,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + oq21_cost_trade(t,h,type) Superregional trade costs (mio. USD17MER per yr) + oq21_cost_trade_reg(t,h,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/21_trade/selfsuff_reduced/input.gms b/modules/21_trade/selfsuff_reduced/input.gms index 19a8d28d00..f170ff39f0 100644 --- a/modules/21_trade/selfsuff_reduced/input.gms +++ b/modules/21_trade/selfsuff_reduced/input.gms @@ -15,8 +15,8 @@ sets scalars s21_trade_tariff Trade tariff switch (1=on 0=off) (1) / 1 / - s21_cost_import Cost for additional imports to maintain feasibility (USD05MER per tDM) / 10000 / - s21_min_trade_margin_forestry Minimum trade margin for forestry products (USD05MER per tDM) / 50 / + s21_cost_import Cost for additional imports to maintain feasibility (USD17MER per tDM) / 12300 / + s21_min_trade_margin_forestry Minimum trade margin for forestry products (USD17MER per tDM) / 62 / ; table f21_trade_bal_reduction(t_all,trade_groups21,trade_regime21) Share of inelastic trade pool (1) @@ -39,13 +39,13 @@ $ondelim $include "./modules/21_trade/input/f21_trade_balanceflow.cs3" $offdelim; -table f21_trade_margin(h,kall) Costs of freight and insurance (USD05MER per tDM) +table f21_trade_margin(h,kall) Costs of freight and insurance (USD17MER per tDM) $ondelim $include "./modules/21_trade/input/f21_trade_margin.cs3" $offdelim ; -table f21_trade_tariff(h,kall) Specific duty tariffs (USD05MER per tDM) +table f21_trade_tariff(h,kall) Specific duty tariffs (USD17MER per tDM) $ondelim $include "./modules/21_trade/input/f21_trade_tariff.cs3" $offdelim diff --git a/modules/21_trade/selfsuff_reduced/scaling.gms b/modules/21_trade/selfsuff_reduced/scaling.gms index b785809e7b..445ed50447 100644 --- a/modules/21_trade/selfsuff_reduced/scaling.gms +++ b/modules/21_trade/selfsuff_reduced/scaling.gms @@ -6,4 +6,4 @@ *** | Contact: magpie@pik-potsdam.de vm_cost_trade.scale(i) = 10e5; -v21_cost_trade_reg.scale(h,k_trade) = 10e3; +v21_cost_trade_reg.scale(h,k_trade) = 10e4; diff --git a/modules/21_trade/selfsuff_reduced_bilateral22/declarations.gms b/modules/21_trade/selfsuff_reduced_bilateral22/declarations.gms index 52bfeefb13..3df42f1cd1 100644 --- a/modules/21_trade/selfsuff_reduced_bilateral22/declarations.gms +++ b/modules/21_trade/selfsuff_reduced_bilateral22/declarations.gms @@ -7,18 +7,18 @@ parameters i21_trade_bal_reduction(t_all,k_trade) Trade balance reduction (1) - i21_trade_margin(i_ex,i_im,k_trade) Trade transport and admin costs (USD05MER per tDM) - i21_trade_tariff(t_all, i_ex,i_im,k_trade) Trade tariffs (USD05MER per tDM) + i21_trade_margin(i_ex,i_im,k_trade) Trade transport and admin costs (USD17MER per tDM) + i21_trade_tariff(t_all, i_ex,i_im,k_trade) Trade tariffs (USD17MER per tDM) ; positive variables v21_excess_dem(k_trade) Demand exceeding the minimum self-sufficiency (mio. tDM per yr) v21_excess_prod(h,k_trade) Superregional production exceeding the minimum self-sufficiency production (mio. tDM per yr) v21_trade(i_ex,i_im,k_trade) Amounts traded bilaterally (mio. tDM per yr) - v21_cost_tariff_reg(i,k_trade) Regional trade tariffs for each tradable commodity (mio. USD05MER per yr) - v21_cost_margin_reg(i,k_trade) Rregional trade margins for each tradable commodity (mio. USD05MER per yr) - vm_cost_trade(i) Regional trade costs (mio. USD05MER per yr) - v21_cost_trade_reg(i,k_trade) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + v21_cost_tariff_reg(i,k_trade) Regional trade tariffs for each tradable commodity (mio. USD17MER per yr) + v21_cost_margin_reg(i,k_trade) Rregional trade margins for each tradable commodity (mio. USD17MER per yr) + vm_cost_trade(i) Regional trade costs (mio. USD17MER per yr) + v21_cost_trade_reg(i,k_trade) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) v21_import_for_feasibility(h,k_trade) Additional imports to maintain feasibility (mio. tDM per yr) ; @@ -30,11 +30,11 @@ equations q21_excess_dem(k_trade) Global excess demand (mio. tDM per yr) q21_excess_supply(h,k_trade) Superregional excess production (mio. tDM per yr) q21_trade_bilat(h, k_trade) Superregional bilateral trade requirements (mio. tDM per yr) - q21_costs_tariffs(i, k_trade) Regional trade tariff costs (mio. USD05MER per yr) + q21_costs_tariffs(i, k_trade) Regional trade tariff costs (mio. USD17MER per yr) q21_costs_margins(i,k_trade) Regional bilateral trade requirements - q21_cost_trade_reg(i,k_trade) Regional trade costs for each tradable commodity (mio. USD05MER per yr) - q21_cost_trade_reg(i,k_trade) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) - q21_cost_trade(i) Superregional trade costs (mio. USD05MER per yr) + q21_cost_trade_reg(i,k_trade) Regional trade costs for each tradable commodity (mio. USD17MER per yr) + q21_cost_trade_reg(i,k_trade) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) + q21_cost_trade(i) Superregional trade costs (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### @@ -42,10 +42,10 @@ parameters ov21_excess_dem(t,k_trade,type) Demand exceeding the minimum self-sufficiency (mio. tDM per yr) ov21_excess_prod(t,h,k_trade,type) Superregional production exceeding the minimum self-sufficiency production (mio. tDM per yr) ov21_trade(t,i_ex,i_im,k_trade,type) Amounts traded bilaterally (mio. tDM per yr) - ov21_cost_tariff_reg(t,i,k_trade,type) Regional trade tariffs for each tradable commodity (mio. USD05MER per yr) - ov21_cost_margin_reg(t,i,k_trade,type) Rregional trade margins for each tradable commodity (mio. USD05MER per yr) - ov_cost_trade(t,i,type) Regional trade costs (mio. USD05MER per yr) - ov21_cost_trade_reg(t,i,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) + ov21_cost_tariff_reg(t,i,k_trade,type) Regional trade tariffs for each tradable commodity (mio. USD17MER per yr) + ov21_cost_margin_reg(t,i,k_trade,type) Rregional trade margins for each tradable commodity (mio. USD17MER per yr) + ov_cost_trade(t,i,type) Regional trade costs (mio. USD17MER per yr) + ov21_cost_trade_reg(t,i,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) ov21_import_for_feasibility(t,h,k_trade,type) Additional imports to maintain feasibility (mio. tDM per yr) oq21_trade_glo(t,k_trade,type) Global production constraint (mio. tDM per yr) oq21_notrade(t,h,k_notrade,type) Superregional production constraint of non-tradable commodities (mio. tDM per yr) @@ -54,10 +54,10 @@ parameters oq21_excess_dem(t,k_trade,type) Global excess demand (mio. tDM per yr) oq21_excess_supply(t,h,k_trade,type) Superregional excess production (mio. tDM per yr) oq21_trade_bilat(t,h,k_trade,type) Superregional bilateral trade requirements (mio. tDM per yr) - oq21_costs_tariffs(t,i,k_trade,type) Regional trade tariff costs (mio. USD05MER per yr) + oq21_costs_tariffs(t,i,k_trade,type) Regional trade tariff costs (mio. USD17MER per yr) oq21_costs_margins(t,i,k_trade,type) Regional bilateral trade requirements - oq21_cost_trade_reg(t,i,k_trade,type) Regional trade costs for each tradable commodity (mio. USD05MER per yr) - oq21_cost_trade_reg(t,i,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD05MER per yr) - oq21_cost_trade(t,i,type) Superregional trade costs (mio. USD05MER per yr) + oq21_cost_trade_reg(t,i,k_trade,type) Regional trade costs for each tradable commodity (mio. USD17MER per yr) + oq21_cost_trade_reg(t,i,k_trade,type) Superregional trade costs for each tradable commodity (mio. USD17MER per yr) + oq21_cost_trade(t,i,type) Superregional trade costs (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/21_trade/selfsuff_reduced_bilateral22/input.gms b/modules/21_trade/selfsuff_reduced_bilateral22/input.gms index e73d9007a3..69e1830f27 100644 --- a/modules/21_trade/selfsuff_reduced_bilateral22/input.gms +++ b/modules/21_trade/selfsuff_reduced_bilateral22/input.gms @@ -18,8 +18,8 @@ scalars s21_trade_tariff_fadeout fadeout scenario setting for trade tariffs / 0 / s21_trade_tariff_startyear year to start fading out trade tariffs / 2025 / s21_trade_tariff_targetyear year to finish fading out trade tariffs / 2050 / - s21_cost_import Cost for additional imports to maintain feasibility (USD05MER per tDM) / 10000 / - s21_min_trade_margin_forestry Minimum trade margin for forestry products (USD05MER per tDM) / 50 / + s21_cost_import Cost for additional imports to maintain feasibility (USD17MER per tDM) / 12300 / + s21_min_trade_margin_forestry Minimum trade margin for forestry products (USD17MER per tDM) / 62 / ; table f21_trade_bal_reduction(t_all,trade_groups21,trade_regime21) Share of inelastic trade pool (1) @@ -42,14 +42,14 @@ $ondelim $include "./modules/21_trade/input/f21_trade_balanceflow.cs3" $offdelim; -parameter f21_trade_margin(i_ex,i_im,kall) Costs of freight and insurance (USD05MER per tDM) +parameter f21_trade_margin(i_ex,i_im,kall) Costs of freight and insurance (USD17MER per tDM) / $ondelim $include "./modules/21_trade/selfsuff_reduced_bilateral22/input/f21_trade_margin_bilat.cs5" $offdelim /; -parameter f21_trade_tariff(i_ex,i_im,kall) Specific duty tariffs (USD05MER per tDM) +parameter f21_trade_tariff(i_ex,i_im,kall) Specific duty tariffs (USD17MER per tDM) / $ondelim $include "./modules/21_trade/selfsuff_reduced_bilateral22/input/f21_trade_tariff_bilat.cs5" diff --git a/modules/21_trade/selfsuff_reduced_bilateral22/scaling.gms b/modules/21_trade/selfsuff_reduced_bilateral22/scaling.gms index b9df882f1a..2a4d3ae97a 100644 --- a/modules/21_trade/selfsuff_reduced_bilateral22/scaling.gms +++ b/modules/21_trade/selfsuff_reduced_bilateral22/scaling.gms @@ -6,4 +6,4 @@ *** | Contact: magpie@pik-potsdam.de vm_cost_trade.scale(i) = 10e5; -v21_cost_trade_reg.scale(i,k_trade) = 10e3; +v21_cost_trade_reg.scale(i,k_trade) = 10e4; diff --git a/modules/29_cropland/detail_apr24/declarations.gms b/modules/29_cropland/detail_apr24/declarations.gms index bfa7e79f98..d43f24181c 100644 --- a/modules/29_cropland/detail_apr24/declarations.gms +++ b/modules/29_cropland/detail_apr24/declarations.gms @@ -22,7 +22,7 @@ parameters i29_treecover_scenario_fader(t_all) Cropland treecover scenario fader (1) i29_treecover_target(t,j) Target share for treecover on total cropland (1) - i29_treecover_penalty(t) Penalty for violation of treecover target (USD05MER per ha) + i29_treecover_penalty(t) Penalty for violation of treecover target (USD17MER per ha) p29_treecover_bii_coeff(bii_class_secd,potnatveg) BII coefficient for cropland treecover (1) p29_carbon_density_ac(t,j,ac,ag_pools) Carbon density for ac and ag_pools (tC per ha) p29_treecover(t,j,ac) Cropland tree cover per age class (mio. ha) @@ -31,16 +31,16 @@ parameters i29_fallow_scenario_fader(t_all) Fallow land scenario fader (1) i29_fallow_target(t) Target share for fallow land on total cropland (1) - i29_fallow_penalty(t) Penalty for violation of fallow target (USD05MER per ha) + i29_fallow_penalty(t) Penalty for violation of fallow target (USD17MER per ha) ; positive variables - vm_cost_cropland(j) Cost for total cropland (mio. USD05MER per yr) + vm_cost_cropland(j) Cost for total cropland (mio. USD17MER per yr) vm_treecover(j) Cropland tree cover (mio. ha) v29_treecover(j,ac) Cropland tree cover per age class (mio. ha) v29_treecover_missing(j) Missing treecover area towards target (mio. ha) - v29_cost_treecover_est(j) Establishment cost for cropland tree cover (mio. USD05MER per yr) - v29_cost_treecover_recur(j) Recurring cost for cropland tree cover (mio. USD05MER per yr) + v29_cost_treecover_est(j) Establishment cost for cropland tree cover (mio. USD17MER per yr) + v29_cost_treecover_recur(j) Recurring cost for cropland tree cover (mio. USD17MER per yr) vm_fallow(j) Fallow land is temporarily fallow cropland (mio. ha) v29_fallow_missing(j) Missing fallow land towards target (mio. ha) ; @@ -48,7 +48,7 @@ positive variables equations q29_cropland(j) Total cropland calculation (mio. ha) q29_avl_cropland(j) Available cropland constraint (mio. ha) - q29_cost_cropland(j) Costs and benefits related to agroforestry (mio. USD05MER per yr) + q29_cost_cropland(j) Costs and benefits related to agroforestry (mio. USD17MER per yr) q29_carbon(j,ag_pools,stockType) Cropland above ground carbon content calculation (mio. tC) q29_land_snv(j) Land constraint for the SNV policy in cropland areas (mio. ha) q29_land_snv_trans(j) Land transition constraint for SNV policy in cropland areas (mio. ha) @@ -59,24 +59,24 @@ equations q29_treecover_min(j) Missing treecover area towards target (mio. ha) q29_treecover_max(j) Maximum treecover area (mio. ha) q29_treecover_bv(j,potnatveg) Biodiversity value for cropland treecover (mio. ha) - q29_cost_treecover_est(j) Establishment cost for cropland tree cover (mio. USD05MER per yr) - q29_cost_treecover_recur(j) Recurring cost for cropland tree cover (mio. USD05MER per yr) + q29_cost_treecover_est(j) Establishment cost for cropland tree cover (mio. USD17MER per yr) + q29_cost_treecover_recur(j) Recurring cost for cropland tree cover (mio. USD17MER per yr) q29_treecover_est(j,ac) Cropland treecover establishment (mio. ha) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_cropland(t,j,type) Cost for total cropland (mio. USD05MER per yr) + ov_cost_cropland(t,j,type) Cost for total cropland (mio. USD17MER per yr) ov_treecover(t,j,type) Cropland tree cover (mio. ha) ov29_treecover(t,j,ac,type) Cropland tree cover per age class (mio. ha) ov29_treecover_missing(t,j,type) Missing treecover area towards target (mio. ha) - ov29_cost_treecover_est(t,j,type) Establishment cost for cropland tree cover (mio. USD05MER per yr) - ov29_cost_treecover_recur(t,j,type) Recurring cost for cropland tree cover (mio. USD05MER per yr) + ov29_cost_treecover_est(t,j,type) Establishment cost for cropland tree cover (mio. USD17MER per yr) + ov29_cost_treecover_recur(t,j,type) Recurring cost for cropland tree cover (mio. USD17MER per yr) ov_fallow(t,j,type) Fallow land is temporarily fallow cropland (mio. ha) ov29_fallow_missing(t,j,type) Missing fallow land towards target (mio. ha) oq29_cropland(t,j,type) Total cropland calculation (mio. ha) oq29_avl_cropland(t,j,type) Available cropland constraint (mio. ha) - oq29_cost_cropland(t,j,type) Costs and benefits related to agroforestry (mio. USD05MER per yr) + oq29_cost_cropland(t,j,type) Costs and benefits related to agroforestry (mio. USD17MER per yr) oq29_carbon(t,j,ag_pools,stockType,type) Cropland above ground carbon content calculation (mio. tC) oq29_land_snv(t,j,type) Land constraint for the SNV policy in cropland areas (mio. ha) oq29_land_snv_trans(t,j,type) Land transition constraint for SNV policy in cropland areas (mio. ha) @@ -87,8 +87,8 @@ parameters oq29_treecover_min(t,j,type) Missing treecover area towards target (mio. ha) oq29_treecover_max(t,j,type) Maximum treecover area (mio. ha) oq29_treecover_bv(t,j,potnatveg,type) Biodiversity value for cropland treecover (mio. ha) - oq29_cost_treecover_est(t,j,type) Establishment cost for cropland tree cover (mio. USD05MER per yr) - oq29_cost_treecover_recur(t,j,type) Recurring cost for cropland tree cover (mio. USD05MER per yr) + oq29_cost_treecover_est(t,j,type) Establishment cost for cropland tree cover (mio. USD17MER per yr) + oq29_cost_treecover_recur(t,j,type) Recurring cost for cropland tree cover (mio. USD17MER per yr) oq29_treecover_est(t,j,ac,type) Cropland treecover establishment (mio. ha) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/29_cropland/detail_apr24/input.gms b/modules/29_cropland/detail_apr24/input.gms index 0b8b21899e..77f9113cce 100644 --- a/modules/29_cropland/detail_apr24/input.gms +++ b/modules/29_cropland/detail_apr24/input.gms @@ -15,8 +15,8 @@ scalars s29_snv_scenario_target SNV scenario target year / 2050 / s29_snv_relocation_data_x1 First reference value in SNV target cropland data (1) / 0.2 / s29_snv_relocation_data_x2 Second reference value in SNV target cropland data (1) / 0.5 / - s29_cost_treecover_est Tree cover establishment cost (USD05MER per ha) / 2000 / - s29_cost_treecover_recur Tree cover recurring cost (USD05MER per ha) / 500 / + s29_cost_treecover_est Tree cover establishment cost (USD17MER per ha) / 2460 / + s29_cost_treecover_recur Tree cover recurring cost (USD17MER per ha) / 615 / s29_treecover_plantation Growth curve switch for tree cover on cropland 0=natveg 1=plantations (1) / 0 / s29_treecover_bii_coeff BII coefficent to be used for tree cover on cropland 0=secondary vegetation 1=timber plantations (1) / 0 / s29_treecover_scenario_start Cropland treecover scenario start year / 2025 / @@ -25,13 +25,13 @@ scalars s29_treecover_target_noselect Minimum share of treecover on total cropland in target year (1) / 0 / s29_treecover_keep Avoid loss of existing treecover (1=yes 0=no) / 0 / s29_treecover_max Maximum share of treecover on total cropland (1) / 0.4 / - s29_treecover_penalty_before Penalty for violation of treecover target before scenario start (USD05MER per ha) / 0 / - s29_treecover_penalty Penalty for violation of treecover target after sceanrio start (USD05MER per ha) / 5000 / + s29_treecover_penalty_before Penalty for violation of treecover target before scenario start (USD17MER per ha) / 0 / + s29_treecover_penalty Penalty for violation of treecover target after sceanrio start (USD17MER per ha) / 6150 / s29_fallow_scenario_start Fallow land scenario start year / 2025 / s29_fallow_scenario_target Fallow land scenario target year / 2050 / s29_fallow_target Minimum share of fallow land on total cropland in target year (1) / 0 / s29_fallow_max Maximum share of fallow land on total cropland (1) / 0.4 / - s29_fallow_penalty Penalty for violation of fallow target (USD05MER per ha) / 500 / + s29_fallow_penalty Penalty for violation of fallow target (USD17MER per ha) / 615 / s29_treecover_map Treecover map for initialization (binary) / 0 / s29_fader_functional_form Switch for functional form of faders (1) / 2 / ; @@ -67,7 +67,7 @@ sets UGA,UKR,UMI,URY,USA,UZB,VAT,VCT,VEN,VGB, VIR,VNM,VUT,WLF,WSM,YEM,ZAF,ZMB,ZWE / -land_snv(land) land types allowed in the SNV policy / secdforest, forestry, past, other / +land_snv(land) land types allowed in the SNV policy / secdforest, other / ; ********* AVAILABLE CROPLAND ******************************************* diff --git a/modules/29_cropland/simple_apr24/declarations.gms b/modules/29_cropland/simple_apr24/declarations.gms index 625f819b2c..a9e37fac6e 100644 --- a/modules/29_cropland/simple_apr24/declarations.gms +++ b/modules/29_cropland/simple_apr24/declarations.gms @@ -18,7 +18,7 @@ parameters ; positive variables - vm_cost_cropland(j) Cost for total cropland (mio. USD05MER per yr) + vm_cost_cropland(j) Cost for total cropland (mio. USD17MER per yr) vm_fallow(j) Fallow land is temporarily fallow cropland (mio. ha) vm_treecover(j) Cropland tree cover (mio. ha) ; @@ -33,7 +33,7 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_cropland(t,j,type) Cost for total cropland (mio. USD05MER per yr) + ov_cost_cropland(t,j,type) Cost for total cropland (mio. USD17MER per yr) ov_fallow(t,j,type) Fallow land is temporarily fallow cropland (mio. ha) ov_treecover(t,j,type) Cropland tree cover (mio. ha) oq29_cropland(t,j,type) Total cropland calculation (mio. ha) diff --git a/modules/29_cropland/simple_apr24/input.gms b/modules/29_cropland/simple_apr24/input.gms index f13c46f56f..70513be844 100644 --- a/modules/29_cropland/simple_apr24/input.gms +++ b/modules/29_cropland/simple_apr24/input.gms @@ -47,7 +47,7 @@ sets UGA,UKR,UMI,URY,USA,UZB,VAT,VCT,VEN,VGB, VIR,VNM,VUT,WLF,WSM,YEM,ZAF,ZMB,ZWE / -land_snv(land) land types allowed in the SNV policy / secdforest, forestry, past, other / +land_snv(land) land types allowed in the SNV policy / secdforest, other / ; ********* AVAILABLE CROPLAND ******************************************* diff --git a/modules/30_croparea/detail_apr24/declarations.gms b/modules/30_croparea/detail_apr24/declarations.gms index 749c03c37b..f5eedf4e2b 100644 --- a/modules/30_croparea/detail_apr24/declarations.gms +++ b/modules/30_croparea/detail_apr24/declarations.gms @@ -7,22 +7,22 @@ parameters i30_rotation_rules(t_all,rota30) Rotational constraints (1) - i30_rotation_incentives(t_all,rota30) Penalty for violating rotational constraints (USD05MER per ha) + i30_rotation_incentives(t_all,rota30) Penalty for violating rotational constraints (USD17MER per ha) i30_rotation_scenario_fader(t_all) Crop rotation scenario fader (1) i30_implementation Switch for rule-based (1) or penalty-based (0) implementation of rotation scenarios i30_betr_scenario_fader(t_all) Bioenergy land scenario fader (1) i30_betr_target(t,j) Target share for bioenergy land on total cropland (1) - i30_betr_penalty(t) Penalty for violation of betr target (USD05MER per ha) + i30_betr_penalty(t) Penalty for violation of betr target (USD17MER per ha) p30_country_weight(i) Policy country weight per region (1) p30_country_dummy(iso) Dummy parameter indicating whether country is affected by selected policy (1) ; positive variables vm_area(j,kcr,w) Agricultural production area (mio. ha) - vm_rotation_penalty(i) Penalty for violating rotational constraints (mio. USD05MER) + vm_rotation_penalty(i) Penalty for violating rotational constraints (mio. USD17MER) vm_carbon_stock_croparea(j,ag_pools) Carbon stock in croparea (tC) - v30_penalty_max_irrig(j,rotamax30) Penalty for violating max rotational constraints on irrigated land (mio. USD05MER) - v30_penalty(j,rota30) Penalty for violating rotational constraints (mio. USD05MER) + v30_penalty_max_irrig(j,rotamax30) Penalty for violating max rotational constraints on irrigated land (mio. USD17MER) + v30_penalty(j,rota30) Penalty for violating rotational constraints (mio. USD17MER) v30_betr_missing(j) Missing bioenergy tree land towards target (mio. ha) v30_crop_area(i) Total regional crop production area (mio. ha) ; @@ -30,7 +30,7 @@ positive variables equations q30_prod(j,kcr) Production of cropped products (mio. tDM) q30_betr_missing(j) Missing bioenergy tree land towards target (mio. ha) - q30_rotation_penalty(i) Total penalty for rotational constraint violations (mio. USD05MER) + q30_rotation_penalty(i) Total penalty for rotational constraint violations (mio. USD17MER) q30_rotation_max(j,rotamax30) Local maximum rotational constraints (mio. ha) q30_rotation_min(j,rotamin30) Local minimum rotational constraints (mio. ha) q30_rotation_max2(j,rotamax30) Local maximum rotational constraints (mio. ha) @@ -45,15 +45,15 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_area(t,j,kcr,w,type) Agricultural production area (mio. ha) - ov_rotation_penalty(t,i,type) Penalty for violating rotational constraints (mio. USD05MER) + ov_rotation_penalty(t,i,type) Penalty for violating rotational constraints (mio. USD17MER) ov_carbon_stock_croparea(t,j,ag_pools,type) Carbon stock in croparea (tC) - ov30_penalty_max_irrig(t,j,rotamax30,type) Penalty for violating max rotational constraints on irrigated land (mio. USD05MER) - ov30_penalty(t,j,rota30,type) Penalty for violating rotational constraints (mio. USD05MER) + ov30_penalty_max_irrig(t,j,rotamax30,type) Penalty for violating max rotational constraints on irrigated land (mio. USD17MER) + ov30_penalty(t,j,rota30,type) Penalty for violating rotational constraints (mio. USD17MER) ov30_betr_missing(t,j,type) Missing bioenergy tree land towards target (mio. ha) ov30_crop_area(t,i,type) Total regional crop production area (mio. ha) oq30_prod(t,j,kcr,type) Production of cropped products (mio. tDM) oq30_betr_missing(t,j,type) Missing bioenergy tree land towards target (mio. ha) - oq30_rotation_penalty(t,i,type) Total penalty for rotational constraint violations (mio. USD05MER) + oq30_rotation_penalty(t,i,type) Total penalty for rotational constraint violations (mio. USD17MER) oq30_rotation_max(t,j,rotamax30,type) Local maximum rotational constraints (mio. ha) oq30_rotation_min(t,j,rotamin30,type) Local minimum rotational constraints (mio. ha) oq30_rotation_max2(t,j,rotamax30,type) Local maximum rotational constraints (mio. ha) diff --git a/modules/30_croparea/detail_apr24/input.gms b/modules/30_croparea/detail_apr24/input.gms index 47c979fc0e..ec84dd5d8f 100644 --- a/modules/30_croparea/detail_apr24/input.gms +++ b/modules/30_croparea/detail_apr24/input.gms @@ -28,7 +28,7 @@ scalars s30_betr_start_noselect Share of bioenergy land on total cropland in start year (1) / 0 / s30_betr_target Share of bioenergy land on total cropland in target year (1) / 0 / s30_betr_target_noselect Share of bioenergy land on total cropland in target year (1) / 0 / - s30_betr_penalty Penalty for violation of betr target (USD05MER per ha) / 2000 / + s30_betr_penalty Penalty for violation of betr target (USD17MER per ha) / 2460 / s30_annual_max_growth Max annual cropland growth as share of previous cropland (1) / Inf / ; @@ -82,7 +82,7 @@ m_fillmissingyears(fm_croparea,"j,w,kcr"); ********* CROP-ROTATIONAL CONSTRAINT ******************************************* -table f30_rotation_incentives(rota30,incentscen30) penalties for violating rotation rules (USD05MER) +table f30_rotation_incentives(rota30,incentscen30) penalties for violating rotation rules (USD17MER) $ondelim $include "./modules/30_croparea/detail_apr24/input/f30_rotation_incentives.csv" $offdelim diff --git a/modules/30_croparea/simple_apr24/declarations.gms b/modules/30_croparea/simple_apr24/declarations.gms index cc118fa84a..3cfdfb3833 100644 --- a/modules/30_croparea/simple_apr24/declarations.gms +++ b/modules/30_croparea/simple_apr24/declarations.gms @@ -9,14 +9,14 @@ parameters i30_rotation_scenario_fader(t_all) Crop rotation scenario fader (1) i30_betr_scenario_fader(t_all) Bioenergy land scenario fader (1) i30_betr_target(t,j) Target share for bioenergy land on total cropland (1) - i30_betr_penalty(t) Penalty for violation of betr target (USD05MER per ha) + i30_betr_penalty(t) Penalty for violation of betr target (USD17MER per ha) p30_country_weight(i) Policy country weight per region (1) p30_country_dummy(iso) Dummy parameter indicating whether country is affected by selected policy (1) ; positive variables vm_area(j,kcr,w) Agricultural production area (mio. ha) - vm_rotation_penalty(i) Penalty for violating rotational constraints (mio. USD05MER) + vm_rotation_penalty(i) Penalty for violating rotational constraints (mio. USD17MER) vm_carbon_stock_croparea(j,ag_pools) Carbon stock in croparea (tC) v30_betr_missing(j) Missing bioenergy tree land towards target (mio. ha) v30_crop_area(i) Total regional crop production area (mio. ha) @@ -25,7 +25,7 @@ positive variables equations q30_prod(j,kcr) Production of cropped products (mio. tDM) q30_betr_missing(j) Missing bioenergy tree land towards target (mio. ha) - q30_cost(i) Cost (mio. USD05MER) + q30_cost(i) Cost (mio. USD17MER) q30_rotation_max(j,crp30,w) Local maximum rotational constraints (mio. ha) q30_rotation_min(j,crp30,w) Local minimum rotational constraints (mio. ha) q30_carbon(j,ag_pools) Croplarea above ground carbon content calculation (mio. tC) @@ -37,13 +37,13 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_area(t,j,kcr,w,type) Agricultural production area (mio. ha) - ov_rotation_penalty(t,i,type) Penalty for violating rotational constraints (mio. USD05MER) + ov_rotation_penalty(t,i,type) Penalty for violating rotational constraints (mio. USD17MER) ov_carbon_stock_croparea(t,j,ag_pools,type) Carbon stock in croparea (tC) ov30_betr_missing(t,j,type) Missing bioenergy tree land towards target (mio. ha) ov30_crop_area(t,i,type) Total regional crop production area (mio. ha) oq30_prod(t,j,kcr,type) Production of cropped products (mio. tDM) oq30_betr_missing(t,j,type) Missing bioenergy tree land towards target (mio. ha) - oq30_cost(t,i,type) Cost (mio. USD05MER) + oq30_cost(t,i,type) Cost (mio. USD17MER) oq30_rotation_max(t,j,crp30,w,type) Local maximum rotational constraints (mio. ha) oq30_rotation_min(t,j,crp30,w,type) Local minimum rotational constraints (mio. ha) oq30_carbon(t,j,ag_pools,type) Croplarea above ground carbon content calculation (mio. tC) diff --git a/modules/30_croparea/simple_apr24/input.gms b/modules/30_croparea/simple_apr24/input.gms index e99a128cb0..5c22a85779 100644 --- a/modules/30_croparea/simple_apr24/input.gms +++ b/modules/30_croparea/simple_apr24/input.gms @@ -23,7 +23,7 @@ scalars s30_betr_start_noselect Share of bioenergy land on total cropland in start year (1) / 0 / s30_betr_target Share of bioenergy land on total cropland in target year (1) / 0 / s30_betr_target_noselect Share of bioenergy land on total cropland in target year (1) / 0 / - s30_betr_penalty Penalty for violation of betr target (USD05MER per ha) / 2000 / + s30_betr_penalty Penalty for violation of betr target (USD17MER per ha) / 2460 / s30_annual_max_growth Max annual cropland growth as share of previous cropland (1) / Inf / ; diff --git a/modules/31_past/endo_jun13/declarations.gms b/modules/31_past/endo_jun13/declarations.gms index 69c530d44e..2630ffc3e0 100644 --- a/modules/31_past/endo_jun13/declarations.gms +++ b/modules/31_past/endo_jun13/declarations.gms @@ -9,20 +9,20 @@ equations q31_prod(j) Cellular pasture production constraint (mio. tDM per yr) q31_carbon(j,ag_pools,stockType) Above ground carbon content calculation for pasture (mio tC) - q31_cost_prod_past(i) Costs for putting animals on pastures (mio. USD05MER per yr) + q31_cost_prod_past(i) Costs for putting animals on pastures (mio. USD17MER per yr) q31_bv_manpast(j,potnatveg) Biodiversity value for managed pastures (Mha) q31_bv_rangeland(j,potnatveg) Biodiversity value for rangeland (Mha) ; positive variables - vm_cost_prod_past(i) Costs for putting animals on pastures (mio. USD05MER per yr) + vm_cost_prod_past(i) Costs for putting animals on pastures (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_prod_past(t,i,type) Costs for putting animals on pastures (mio. USD05MER per yr) + ov_cost_prod_past(t,i,type) Costs for putting animals on pastures (mio. USD17MER per yr) oq31_prod(t,j,type) Cellular pasture production constraint (mio. tDM per yr) oq31_carbon(t,j,ag_pools,stockType,type) Above ground carbon content calculation for pasture (mio tC) - oq31_cost_prod_past(t,i,type) Costs for putting animals on pastures (mio. USD05MER per yr) + oq31_cost_prod_past(t,i,type) Costs for putting animals on pastures (mio. USD17MER per yr) oq31_bv_manpast(t,j,potnatveg,type) Biodiversity value for managed pastures (Mha) oq31_bv_rangeland(t,j,potnatveg,type) Biodiversity value for rangeland (Mha) ; diff --git a/modules/31_past/endo_jun13/input.gms b/modules/31_past/endo_jun13/input.gms index b2055729cd..766e8e479f 100644 --- a/modules/31_past/endo_jun13/input.gms +++ b/modules/31_past/endo_jun13/input.gms @@ -7,5 +7,5 @@ scalars - s31_fac_req_past Factor requirements (USD05MER per tDM) / 1 / + s31_fac_req_past Factor requirements (USD17MER per tDM) / 1 / ; diff --git a/modules/31_past/grasslands_apr22/declarations.gms b/modules/31_past/grasslands_apr22/declarations.gms index fa3568dee3..55b632c120 100644 --- a/modules/31_past/grasslands_apr22/declarations.gms +++ b/modules/31_past/grasslands_apr22/declarations.gms @@ -8,18 +8,18 @@ equations q31_carbon(j,ag_pools,stockType) Above ground carbon content calculation for pasture (mio tC) -q31_cost_prod_past(i) Costs for putting animals on grasslands and shifting between grassland types (mio. USD05MER per yr) +q31_cost_prod_past(i) Costs for putting animals on grasslands and shifting between grassland types (mio. USD17MER per yr) q31_bv_manpast(j,potnatveg) Biodiversity value for managed pastures (Mha) q31_bv_rangeland(j,potnatveg) Biodiversity value for rangeland (Mha) q31_pasture_areas(j) Total grassland calculation (mio. ha) q31_prod_pm(j) Cellular grass production constraint (mio. tDM per yr) -q31_expansion_cost(j, grassland) Grassland expansion cost constraint (mio. USD05MER) +q31_expansion_cost(j, grassland) Grassland expansion cost constraint (mio. USD17MER) ; positive variables v31_grass_area(j,grassland) Grassland areas (mio. ha) -v31_cost_grass_expansion(j, grassland) Costs of grassland expansion (mio. USD05MER) -vm_cost_prod_past(i) Costs for putting animals on grasslands and shifting between grassland types (mio. USD05MER per yr) +v31_cost_grass_expansion(j, grassland) Costs of grassland expansion (mio. USD17MER) +vm_cost_prod_past(i) Costs for putting animals on grasslands and shifting between grassland types (mio. USD17MER per yr) ; parameters @@ -37,15 +37,15 @@ i31_grass_hist_yld(t_all,i, grassland) FAO gassland yields (tDM *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov31_grass_area(t,j,grassland,type) Grassland areas (mio. ha) - ov31_cost_grass_expansion(t,j,grassland,type) Costs of grassland expansion (mio. USD05MER) - ov_cost_prod_past(t,i,type) Costs for putting animals on grasslands and shifting between grassland types (mio. USD05MER per yr) + ov31_cost_grass_expansion(t,j,grassland,type) Costs of grassland expansion (mio. USD17MER) + ov_cost_prod_past(t,i,type) Costs for putting animals on grasslands and shifting between grassland types (mio. USD17MER per yr) oq31_carbon(t,j,ag_pools,stockType,type) Above ground carbon content calculation for pasture (mio tC) - oq31_cost_prod_past(t,i,type) Costs for putting animals on grasslands and shifting between grassland types (mio. USD05MER per yr) + oq31_cost_prod_past(t,i,type) Costs for putting animals on grasslands and shifting between grassland types (mio. USD17MER per yr) oq31_bv_manpast(t,j,potnatveg,type) Biodiversity value for managed pastures (Mha) oq31_bv_rangeland(t,j,potnatveg,type) Biodiversity value for rangeland (Mha) oq31_pasture_areas(t,j,type) Total grassland calculation (mio. ha) oq31_prod_pm(t,j,type) Cellular grass production constraint (mio. tDM per yr) - oq31_expansion_cost(t,j,grassland,type) Grassland expansion cost constraint (mio. USD05MER) + oq31_expansion_cost(t,j,grassland,type) Grassland expansion cost constraint (mio. USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/31_past/grasslands_apr22/input.gms b/modules/31_past/grasslands_apr22/input.gms index e0b33a5632..f5d0dd3463 100644 --- a/modules/31_past/grasslands_apr22/input.gms +++ b/modules/31_past/grasslands_apr22/input.gms @@ -7,8 +7,8 @@ scalars - s31_cost_expansion Grasslands expansion costs (USD05MER per hectare) / 1 / - s31_cost_grass_prod Grasslands factor costs (USD05MER per tDM) / 1 / + s31_cost_expansion Grasslands expansion costs (USD17MER per hectare) / 1 / + s31_cost_grass_prod Grasslands factor costs (USD17MER per tDM) / 1 / ; $setglobal c31_grassl_yld_scenario cc diff --git a/modules/31_past/grasslands_apr22/realization.gms b/modules/31_past/grasslands_apr22/realization.gms index c9bdd9650d..389b2e95c0 100644 --- a/modules/31_past/grasslands_apr22/realization.gms +++ b/modules/31_past/grasslands_apr22/realization.gms @@ -25,7 +25,7 @@ *' We currently do not accout for specific differences within intensive *' pasture management systems and related degradation of grasslands for both *' rangelands or managed pastures. Grass production costs and conversion costs between -*' grassland types are set 1 USD05MER per unit due to lack of data. +*' grassland types are set 1 USD17MER per unit due to lack of data. diff --git a/modules/32_forestry/dynamic_may24/declarations.gms b/modules/32_forestry/dynamic_may24/declarations.gms index fe6faa21f5..397e94a847 100644 --- a/modules/32_forestry/dynamic_may24/declarations.gms +++ b/modules/32_forestry/dynamic_may24/declarations.gms @@ -54,16 +54,16 @@ parameters p32_forestry_product_dist(t,i,kforestry) Distribution of wood products (1) p32_future_to_current_demand_ratio(t,i) Ratio of future and current timber demand (1) p32_demand_forestry_future(t,i,kforestry) Future forestry demand in current time step (tDM per yr) - p32_est_cost(type32) Establishment cost (USD per ha) + p32_est_cost(type32) Establishment cost (USD17MER per ha) ; positive variables vm_cost_fore(i) Forestry costs (Mio USD) - v32_cost_hvarea(i) Cost of harvesting timber from forests (mio. USD per yr) + v32_cost_hvarea(i) Cost of harvesting timber from forests (mio. USD17MER per yr) v32_land(j,type32,ac) Forestry land pools (mio. ha) v32_land_missing(j) Technical area balance term for timber plantation establishment (mio. ha) vm_landdiff_forestry Aggregated difference in forestry land compared to previous timestep (mio. ha) - v32_cost_recur(i) Recurring forest management costs (USD per ha) + v32_cost_recur(i) Recurring forest management costs (USD17MER per ha) v32_land_expansion(j,type32) Forestry land expansion (mio. ha) v32_land_reduction(j,type32,ac) Forestry land reduction (mio. ha) v32_cost_establishment(i) Cost of establishment calculated at the current time step (mio. USD) @@ -102,7 +102,7 @@ equations q32_cost_establishment(i) Present value of cost of establishment (mio. USD) q32_bgp_aff(j,ac) Biophysical afforestation calculation (mio. tCeq) q32_forestry_est(j,type32,ac) Distribution of forestry establishment over ac_est (mio. ha) - q32_cost_hvarea(i) Cost of harvesting timber from forests (mio. USD per yr) + q32_cost_hvarea(i) Cost of harvesting timber from forests (mio. USD17MER per yr) q32_prod_forestry(j) Production of woody biomass from commercial plantations (mio. tDM per yr) q32_bv_aff(j,potnatveg) Biodiversity value for aff forestry land (Mha) q32_bv_ndc(j,potnatveg) Biodiversity value for ndc forestry land (Mha) @@ -116,11 +116,11 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_cost_fore(t,i,type) Forestry costs (Mio USD) - ov32_cost_hvarea(t,i,type) Cost of harvesting timber from forests (mio. USD per yr) + ov32_cost_hvarea(t,i,type) Cost of harvesting timber from forests (mio. USD17MER per yr) ov32_land(t,j,type32,ac,type) Forestry land pools (mio. ha) ov32_land_missing(t,j,type) Technical area balance term for timber plantation establishment (mio. ha) ov_landdiff_forestry(t,type) Aggregated difference in forestry land compared to previous timestep (mio. ha) - ov32_cost_recur(t,i,type) Recurring forest management costs (USD per ha) + ov32_cost_recur(t,i,type) Recurring forest management costs (USD17MER per ha) ov32_land_expansion(t,j,type32,type) Forestry land expansion (mio. ha) ov32_land_reduction(t,j,type32,ac,type) Forestry land reduction (mio. ha) ov32_cost_establishment(t,i,type) Cost of establishment calculated at the current time step (mio. USD) @@ -153,7 +153,7 @@ parameters oq32_cost_establishment(t,i,type) Present value of cost of establishment (mio. USD) oq32_bgp_aff(t,j,ac,type) Biophysical afforestation calculation (mio. tCeq) oq32_forestry_est(t,j,type32,ac,type) Distribution of forestry establishment over ac_est (mio. ha) - oq32_cost_hvarea(t,i,type) Cost of harvesting timber from forests (mio. USD per yr) + oq32_cost_hvarea(t,i,type) Cost of harvesting timber from forests (mio. USD17MER per yr) oq32_prod_forestry(t,j,type) Production of woody biomass from commercial plantations (mio. tDM per yr) oq32_bv_aff(t,j,potnatveg,type) Biodiversity value for aff forestry land (Mha) oq32_bv_ndc(t,j,potnatveg,type) Biodiversity value for ndc forestry land (Mha) diff --git a/modules/32_forestry/dynamic_may24/input.gms b/modules/32_forestry/dynamic_may24/input.gms index 4561adace6..6ffdb2cae8 100644 --- a/modules/32_forestry/dynamic_may24/input.gms +++ b/modules/32_forestry/dynamic_may24/input.gms @@ -24,16 +24,16 @@ $setglobal c32_shock_scenario none scalars s32_hvarea Flag for harvested area and establishemt (0=zero 1=exognous 2=endogneous) / 2 / - s32_est_cost_plant Establishment cost for plantations (USD per ha) / 2000 / - s32_est_cost_natveg Establishment cost for natural vegetation (USD per ha) / 2000 / - s32_recurring_cost Recurring costs (USD per ha) / 500 / - s32_harvesting_cost Harvesting cost (USD per ha) / 2000 / + s32_est_cost_plant Establishment cost for plantations (USD17MER per ha) / 2460 / + s32_est_cost_natveg Establishment cost for natural vegetation (USD17MER per ha) / 2460 / + s32_recurring_cost Recurring costs (USD17MER per ha) / 615 / + s32_harvesting_cost Harvesting cost (USD17MER per ha) / 2460 / s32_planing_horizon Afforestation planing horizon (years) / 50 / s32_rotation_extension Rotation extension factor 1=original rotations 2=100 percent increase in rotations etc (1) / 1 / s32_faustmann_rotation Switch to activate faustmann rotations (1=on 0=off) / 0 / s32_initial_distribution Switch to Activate ageclass distribution in plantations 0=off 1=equal distribution / 1 / - s32_price Price for timber (USD) / 45 / - s32_free_land_cost Penalty for technial area balance term (USD per ha) / 1e+06 / + s32_price Price for timber (USD17MER) / 55 / + s32_free_land_cost Penalty for technial area balance term (USD17MER per ha) / 1e+06 / s32_max_aff_area Maximum total global afforestation (mio. ha) / Inf / s32_aff_plantation Switch for using growth curves for afforestation 0=natveg 1=plantations (1) / 0 / s32_tcre_local Switch for local (1) or global (0) TRCE factors (1) / 1 / diff --git a/modules/32_forestry/dynamic_may24/presolve.gms b/modules/32_forestry/dynamic_may24/presolve.gms index 6ebf6d3240..97d717c3eb 100644 --- a/modules/32_forestry/dynamic_may24/presolve.gms +++ b/modules/32_forestry/dynamic_may24/presolve.gms @@ -33,7 +33,7 @@ v32_land_reduction.fx(j,type32,ac_est) = 0; if(s32_aff_plantation = 0, p32_carbon_density_ac(t,j,"aff",ac,ag_pools) = pm_carbon_density_secdforest_ac(t,j,ac,ag_pools); elseif s32_aff_plantation = 1, - p32_carbon_density_ac(t,j,"aff",ac,ag_pools) = pm_carbon_density_plantation_ac(t,j,ac,"vegc"); + p32_carbon_density_ac(t,j,"aff",ac,ag_pools) = pm_carbon_density_plantation_ac(t,j,ac,ag_pools); ); *' Timber plantations carbon densities: diff --git a/modules/34_urban/exo_nov21/input.gms b/modules/34_urban/exo_nov21/input.gms index abff7533dc..bb9a18190c 100644 --- a/modules/34_urban/exo_nov21/input.gms +++ b/modules/34_urban/exo_nov21/input.gms @@ -10,7 +10,7 @@ $setglobal c34_urban_scenario SSP2 scalars - s34_urban_deviation_cost Artificial cost for urban deviation variables (USD05MER per ha) / 1e+06 / + s34_urban_deviation_cost Artificial cost for urban deviation variables (USD17MER per ha) / 1e+06 / ; table f34_urbanland(t_all, j, urban_scen34) Urban land diff --git a/modules/34_urban/exo_nov21/scaling.gms b/modules/34_urban/exo_nov21/scaling.gms index dec0009dd7..f66056dbbd 100644 --- a/modules/34_urban/exo_nov21/scaling.gms +++ b/modules/34_urban/exo_nov21/scaling.gms @@ -5,4 +5,6 @@ *** | MAgPIE License Exception, version 1.0 (see LICENSE file). *** | Contact: magpie@pik-potsdam.de -vm_cost_urban.scale(j) = 10e4; +vm_cost_urban.scale(j) = 10e3; +v34_cost1.scale(j) = 10e-4; +v34_cost2.scale(j) = 10e-4; diff --git a/modules/35_natveg/pot_forest_may24/declarations.gms b/modules/35_natveg/pot_forest_may24/declarations.gms index a583d4da6c..7ce8011d26 100644 --- a/modules/35_natveg/pot_forest_may24/declarations.gms +++ b/modules/35_natveg/pot_forest_may24/declarations.gms @@ -60,7 +60,7 @@ equations q35_prod_secdforest(j) Production of woody biomass from secondary forests (mio. tDM per yr) q35_prod_primforest(j) Production of woody biomass from primary forests (mio. tDM per yr) q35_prod_other(j) Production of woody biomass from other land (mio. tDM per yr) - q35_cost_hvarea(i) Cost of harvesting natural vegetation (mio. USD) + q35_cost_hvarea(i) Cost of harvesting natural vegetation (mio. USD17MER) q35_bv_primforest(j,potnatveg) Biodiversity value of primary forest (mio. ha) q35_bv_secdforest(j,potnatveg) Biodiversity value of secondary forest (mio. ha) q35_bv_other(j,potnatveg) Biodiversity value of other land (mio. ha) @@ -82,7 +82,7 @@ positive variables v35_hvarea_other(j,othertype35,ac) Harvested area from other land (mio. ha) v35_hvarea_primforest(j) Harvested area from primary forest (mio. ha) vm_prod_natveg(j,land_natveg,kforestry) Production of woody biomass from natural vegetation (mio. tDM per yr) - vm_cost_hvarea_natveg(i) Cost of harvesting natural vegetation (mio. USD) + vm_cost_hvarea_natveg(i) Cost of harvesting natural vegetation (mio. USD17MER) ; @@ -100,7 +100,7 @@ parameters ov35_hvarea_other(t,j,othertype35,ac,type) Harvested area from other land (mio. ha) ov35_hvarea_primforest(t,j,type) Harvested area from primary forest (mio. ha) ov_prod_natveg(t,j,land_natveg,kforestry,type) Production of woody biomass from natural vegetation (mio. tDM per yr) - ov_cost_hvarea_natveg(t,i,type) Cost of harvesting natural vegetation (mio. USD) + ov_cost_hvarea_natveg(t,i,type) Cost of harvesting natural vegetation (mio. USD17MER) oq35_land_secdforest(t,j,type) Secdforest land pool calculation (mio. ha) oq35_land_other(t,j,type) Other land pool calculation (mio. ha) oq35_carbon_primforest(t,j,ag_pools,stockType,type) Primforest carbon stock calculation (mio tC) @@ -125,7 +125,7 @@ parameters oq35_prod_secdforest(t,j,type) Production of woody biomass from secondary forests (mio. tDM per yr) oq35_prod_primforest(t,j,type) Production of woody biomass from primary forests (mio. tDM per yr) oq35_prod_other(t,j,type) Production of woody biomass from other land (mio. tDM per yr) - oq35_cost_hvarea(t,i,type) Cost of harvesting natural vegetation (mio. USD) + oq35_cost_hvarea(t,i,type) Cost of harvesting natural vegetation (mio. USD17MER) oq35_bv_primforest(t,j,potnatveg,type) Biodiversity value of primary forest (mio. ha) oq35_bv_secdforest(t,j,potnatveg,type) Biodiversity value of secondary forest (mio. ha) oq35_bv_other(t,j,potnatveg,type) Biodiversity value of other land (mio. ha) diff --git a/modules/35_natveg/pot_forest_may24/input.gms b/modules/35_natveg/pot_forest_may24/input.gms index d4922eae94..95cfbab45b 100644 --- a/modules/35_natveg/pot_forest_may24/input.gms +++ b/modules/35_natveg/pot_forest_may24/input.gms @@ -19,9 +19,9 @@ s35_hvarea Flag for harvested area (0=zero 1=exognous 2=endogneous) / 2 / s35_hvarea_secdforest annual secdforest harvest rate for s35_hvarea equals 1 (percent per year) / 0 / s35_hvarea_primforest annual primforest harvest rate for s35_hvarea equals 1 (percent per year) / 0 / s35_hvarea_other annual other land harvest rate for s35_hvarea equals 1 (percent per year) / 0 / -s35_timber_harvest_cost_secdforest Cost for harvesting from secondary forest (USD per ha) / 2000/ -s35_timber_harvest_cost_other Cost for harvesting from other land (USD per ha) / 1500 / -s35_timber_harvest_cost_primforest Cost for harvesting from primary forest (USD per ha) / 3000/ +s35_timber_harvest_cost_secdforest Cost for harvesting from secondary forest (USD17MER per ha) / 2460/ +s35_timber_harvest_cost_other Cost for harvesting from other land (USD17MER per ha) / 1845 / +s35_timber_harvest_cost_primforest Cost for harvesting from primary forest (USD17MER per ha) / 3690/ s35_natveg_harvest_shr Constrains the allowed wood harvest from natural vegetation (1=unconstrained) (1) /1/ s35_secdf_distribution Flag for secdf initialization (0=all secondary forest in highest age class 1=Equal distribution among all age classes 2=Poulter distribution from MODIS satellite data) (1) / 2 / s35_forest_damage Damage simulation in forests (0=none 1=shifting agriculture 2= Damage from shifting agriculture is faded out by c35_forest_damage_end 4= f35_forest_shock scenario) / 2 / diff --git a/modules/36_employment/exo_may22/declarations.gms b/modules/36_employment/exo_may22/declarations.gms index 78002b9d20..60bc8d96f1 100644 --- a/modules/36_employment/exo_may22/declarations.gms +++ b/modules/36_employment/exo_may22/declarations.gms @@ -17,15 +17,15 @@ positive variables ; parameters - p36_hourly_costs_iso(t_all,iso, wage_scen) Hourly labor costs in agriculture on iso level before and after including wage scenario (USDMER05 per hour) - p36_hourly_costs_increase(iso) Difference between minimum hourly labor costs and actual hourly labor costs in 2050 (USDMER05 per hour) - pm_hourly_costs(t,i, wage_scen) Hourly labor costs in agriculture on regional level before and after including wage scenario (USDMER05 per hour) + p36_hourly_costs_iso(t_all,iso, wage_scen) Hourly labor costs in agriculture on iso level before and after including wage scenario (USD17MER per hour) + p36_hourly_costs_increase(iso) Difference between minimum hourly labor costs and actual hourly labor costs in 2050 (USD17MER per hour) + pm_hourly_costs(t,i, wage_scen) Hourly labor costs in agriculture on regional level before and after including wage scenario (USD17MER per hour) pm_productivity_gain_from_wages(t,i) Multiplicative factor describing productivity gain related to higher wages (1) p36_total_hours_worked(iso) Total hours worked by all employed people (mio. hours per year) - p36_calibration_hourly_costs(iso) Additive calibration term for hourly labor costs (USDMER05 per hour) + p36_calibration_hourly_costs(iso) Additive calibration term for hourly labor costs (USD17MER per hour) p36_cost_share(t,i) Capital share of factor costs (1) p36_share_calibration(i) Additive calibration term for capital shares (1) - p36_nonmagpie_labor_costs(t,i) Labor costs from subsidies and Value of Production not covered by MAgPIE (mio. USDMER05) + p36_nonmagpie_labor_costs(t,i) Labor costs from subsidies and Value of Production not covered by MAgPIE (mio. USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### diff --git a/modules/36_employment/exo_may22/input.gms b/modules/36_employment/exo_may22/input.gms index 953dc62543..994887e337 100644 --- a/modules/36_employment/exo_may22/input.gms +++ b/modules/36_employment/exo_may22/input.gms @@ -7,7 +7,7 @@ scalars s36_weeks_in_year number of weeks in a year (weeks per yr) / 52.1429 / -s36_minimum_wage global minimum wage (USDMER05 per hour) / 0 / +s36_minimum_wage global minimum wage (USD17MER per hour) / 0 / s36_scale_productivity_with_wage how strong the wage increase should affect labor productivity (1) / 0 / ; @@ -23,7 +23,7 @@ $include "./modules/36_employment/exo_may22/input/f36_weekly_hours_iso.csv" $offdelim ; -table f36_hist_hourly_costs(t_all,iso) Historical values of hourly labor costs in agriculture (USD05MER per h) +table f36_hist_hourly_costs(t_all,iso) Historical values of hourly labor costs in agriculture (USD17MER per h) $ondelim $include "./modules/36_employment/exo_may22/input/f36_historic_hourly_labor_costs.csv" $offdelim @@ -43,13 +43,13 @@ $include "./modules/36_employment/exo_may22/input/f36_historic_ag_employment.csv $offdelim ; -table f36_unspecified_subsidies(t_all,i) Factor cost share of unspecified subsidies not included in MAgPIE labor costs (mio. USD05MER) +table f36_unspecified_subsidies(t_all,i) Factor cost share of unspecified subsidies not included in MAgPIE labor costs (mio. USD17MER) $ondelim $include "./modules/36_employment/exo_may22/input/f36_unspecified_subsidies.csv" $offdelim ; -table f36_nonmagpie_factor_costs(t_all,i) Factor cost share of VoP from ag commodities not mapped to MAgPIE (mio. USD05MER) +table f36_nonmagpie_factor_costs(t_all,i) Factor cost share of VoP from ag commodities not mapped to MAgPIE (mio. USD17MER) $ondelim $include "./modules/36_employment/exo_may22/input/f36_nonmagpie_factor_costs.csv" $offdelim diff --git a/modules/36_employment/exo_may22/presolve.gms b/modules/36_employment/exo_may22/presolve.gms index 48683a10e1..fc00b55a6d 100644 --- a/modules/36_employment/exo_may22/presolve.gms +++ b/modules/36_employment/exo_may22/presolve.gms @@ -6,12 +6,12 @@ *** | Contact: magpie@pik-potsdam.de * capital cost share to split non-magpie factor costs into labor and capital -p36_share_calibration(i) = f36_hist_cap_share("y2010",i)-(f36_regr_cap_share("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f36_regr_cap_share("intercept")); +p36_share_calibration(i) = f36_hist_cap_share("y2010",i)-(f36_regr_cap_share("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f36_regr_cap_share("intercept")); if (m_year(t)<2010, p36_cost_share(t,i) = f36_hist_cap_share(t,i); elseif (m_year(t)>=2010), - p36_cost_share(t,i) = f36_regr_cap_share("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f36_regr_cap_share("intercept")+p36_share_calibration(i); + p36_cost_share(t,i) = f36_regr_cap_share("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f36_regr_cap_share("intercept")+p36_share_calibration(i); ); *' @code diff --git a/modules/38_factor_costs/per_ton_fao_may22/declarations.gms b/modules/38_factor_costs/per_ton_fao_may22/declarations.gms index d79d5b957a..29f31dba80 100644 --- a/modules/38_factor_costs/per_ton_fao_may22/declarations.gms +++ b/modules/38_factor_costs/per_ton_fao_may22/declarations.gms @@ -6,24 +6,24 @@ *** | Contact: magpie@pik-potsdam.de equations -q38_cost_prod_crop_labor(i) Regional labor costs for crop production (mio. USD05MER per yr) -q38_cost_prod_crop_capital(i) Regional capital costs for crop production (mio. USD05MER per yr) +q38_cost_prod_crop_labor(i) Regional labor costs for crop production (mio. USD17MER per yr) +q38_cost_prod_crop_capital(i) Regional capital costs for crop production (mio. USD17MER per yr) ; positive variables -vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio. USD05MER per yr) +vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio. USD17MER per yr) ; parameter pm_cost_share_crops(t,i,factors) Capital and labor shares of the regional factor costs for crop production (1) p38_share_calibration(i) Summation factor used to calibrate calculated capital shares with historical values (1) -i38_fac_req(t_all,i,kcr) Factor requirements (USD05MER per tDM) +i38_fac_req(t_all,i,kcr) Factor requirements (USD17MER per tDM) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio. USD05MER per yr) - oq38_cost_prod_crop_labor(t,i,type) Regional labor costs for crop production (mio. USD05MER per yr) - oq38_cost_prod_crop_capital(t,i,type) Regional capital costs for crop production (mio. USD05MER per yr) + ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio. USD17MER per yr) + oq38_cost_prod_crop_labor(t,i,type) Regional labor costs for crop production (mio. USD17MER per yr) + oq38_cost_prod_crop_capital(t,i,type) Regional capital costs for crop production (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/38_factor_costs/per_ton_fao_may22/input.gms b/modules/38_factor_costs/per_ton_fao_may22/input.gms index bdb4cdd2a2..f04303aa89 100644 --- a/modules/38_factor_costs/per_ton_fao_may22/input.gms +++ b/modules/38_factor_costs/per_ton_fao_may22/input.gms @@ -8,7 +8,7 @@ $setglobal c38_fac_req glo * spatial disaggregation of factor requirements (options: glo, reg) -parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD05MER per tDM) +parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao.csv" @@ -16,7 +16,7 @@ $offdelim / ; -parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD05MER per tDM) +parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao_regional.cs4" diff --git a/modules/38_factor_costs/per_ton_fao_may22/presolve.gms b/modules/38_factor_costs/per_ton_fao_may22/presolve.gms index 1bf4bad5c6..58300986ba 100644 --- a/modules/38_factor_costs/per_ton_fao_may22/presolve.gms +++ b/modules/38_factor_costs/per_ton_fao_may22/presolve.gms @@ -21,13 +21,13 @@ else i38_fac_req(t,i,kcr) = i38_fac_req(t,i,kcr); ); -p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f38_reg_parameters("intercept")); +p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")); if (m_year(t)<2010, pm_cost_share_crops(t,i,"capital") = f38_historical_share(t,i); pm_cost_share_crops(t,i,"labor") = 1 - f38_historical_share(t,i); elseif (m_year(t)>=2010), - pm_cost_share_crops(t,i,"capital") = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f38_reg_parameters("intercept")+p38_share_calibration(i); + pm_cost_share_crops(t,i,"capital") = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")+p38_share_calibration(i); pm_cost_share_crops(t,i,"labor") = 1 - pm_cost_share_crops(t,i,"capital"); ); diff --git a/modules/38_factor_costs/sticky_feb18/declarations.gms b/modules/38_factor_costs/sticky_feb18/declarations.gms index 22a97df414..744328c67d 100644 --- a/modules/38_factor_costs/sticky_feb18/declarations.gms +++ b/modules/38_factor_costs/sticky_feb18/declarations.gms @@ -6,41 +6,41 @@ *** | Contact: magpie@pik-potsdam.de equations - q38_cost_prod_labor(i) Regional labor input costs for crop production (mio USD05MER) - q38_cost_prod_capital(i) Regional capital input costs for crop production (mio USD05MER) - q38_investment_immobile(j,kcr) Cellular immobile investments into farm capital (mio USD05MER) - q38_investment_mobile(j) Cellular mobile investments into farm capital (mio USD05MER) + q38_cost_prod_labor(i) Regional labor input costs for crop production (mio USD17MER) + q38_cost_prod_capital(i) Regional capital input costs for crop production (mio USD17MER) + q38_investment_immobile(j,kcr) Cellular immobile investments into farm capital (mio USD17MER) + q38_investment_mobile(j) Cellular mobile investments into farm capital (mio USD17MER) ; positive variables - vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio USD05MER per yr) - v38_investment_immobile(j,kcr) Investment costs in immobile farm capital (mio USD05MER per yr) - v38_investment_mobile(j) Investment costs in mobile farm capital (mio USD05MER per yr) + vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio USD17MER per yr) + v38_investment_immobile(j,kcr) Investment costs in immobile farm capital (mio USD17MER per yr) + v38_investment_mobile(j) Investment costs in mobile farm capital (mio USD17MER per yr) ; parameters - p38_labor_need(t,i,kcr) Labor input costs per unit of output (USD05MER per ton DM) - p38_capital_need(t,i,kcr,mobil38) Capital requirements per unit of output (USD05MER per ton DM) - p38_capital_immobile(t,j,kcr) Preexisting immobile capital stocks before investment (mio USD05MER) - p38_capital_mobile(t,j) Preexisting mobile capital stocks before investment (mio USD05MER) + p38_labor_need(t,i,kcr) Labor input costs per unit of output (USD17MER per ton DM) + p38_capital_need(t,i,kcr,mobil38) Capital requirements per unit of output (USD17MER per ton DM) + p38_capital_immobile(t,j,kcr) Preexisting immobile capital stocks before investment (mio USD17MER) + p38_capital_mobile(t,j) Preexisting mobile capital stocks before investment (mio USD17MER) pm_cost_share_crops(t,i,factors) Capital and labor shares of the regional factor costs for crop production (1) p38_share_calibration(i) Summation factor used to calibrate calculated capital shares with historical values (1) p38_croparea_start(j,w,kcr) Agricultural land initialization area (mio. ha) - i38_fac_req(t_all,i,kcr) Factor requirements (USD05MER per tDM) + i38_fac_req(t_all,i,kcr) Factor requirements (USD17MER per tDM) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio USD05MER per yr) - ov38_investment_immobile(t,j,kcr,type) Investment costs in immobile farm capital (mio USD05MER per yr) - ov38_investment_mobile(t,j,type) Investment costs in mobile farm capital (mio USD05MER per yr) - oq38_cost_prod_labor(t,i,type) Regional labor input costs for crop production (mio USD05MER) - oq38_cost_prod_capital(t,i,type) Regional capital input costs for crop production (mio USD05MER) - oq38_investment_immobile(t,j,kcr,type) Cellular immobile investments into farm capital (mio USD05MER) - oq38_investment_mobile(t,j,type) Cellular mobile investments into farm capital (mio USD05MER) + ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio USD17MER per yr) + ov38_investment_immobile(t,j,kcr,type) Investment costs in immobile farm capital (mio USD17MER per yr) + ov38_investment_mobile(t,j,type) Investment costs in mobile farm capital (mio USD17MER per yr) + oq38_cost_prod_labor(t,i,type) Regional labor input costs for crop production (mio USD17MER) + oq38_cost_prod_capital(t,i,type) Regional capital input costs for crop production (mio USD17MER) + oq38_investment_immobile(t,j,kcr,type) Cellular immobile investments into farm capital (mio USD17MER) + oq38_investment_mobile(t,j,type) Cellular mobile investments into farm capital (mio USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/38_factor_costs/sticky_feb18/input.gms b/modules/38_factor_costs/sticky_feb18/input.gms index 7f2a513613..73d26f6d04 100644 --- a/modules/38_factor_costs/sticky_feb18/input.gms +++ b/modules/38_factor_costs/sticky_feb18/input.gms @@ -15,7 +15,7 @@ s38_depreciation_rate depreciation rate (share of costs) / 0.05 / s38_immobile immobile capital (share) / 1 / ; -parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD05MER per tDM) +parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao.csv" @@ -23,7 +23,7 @@ $offdelim / ; -parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD05MER per tDM) +parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao_regional.cs4" diff --git a/modules/38_factor_costs/sticky_feb18/presolve.gms b/modules/38_factor_costs/sticky_feb18/presolve.gms index 99eeaa61d3..c770b89f7a 100644 --- a/modules/38_factor_costs/sticky_feb18/presolve.gms +++ b/modules/38_factor_costs/sticky_feb18/presolve.gms @@ -9,14 +9,14 @@ if (smax(j, pm_labor_prod(t,j)) <> 1 OR smin(j, pm_labor_prod(t,j)) <> 1, abort "This factor cost realization cannot handle labor productivities != 1" ); -p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f38_reg_parameters("intercept")); +p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")); if (m_year(t)<2010, pm_cost_share_crops(t,i,"capital") = f38_historical_share(t,i); pm_cost_share_crops(t,i,"labor") = 1 - f38_historical_share(t,i); elseif (m_year(t)>=2010), - pm_cost_share_crops(t,i,"capital") = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f38_reg_parameters("intercept")+p38_share_calibration(i); + pm_cost_share_crops(t,i,"capital") = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")+p38_share_calibration(i); pm_cost_share_crops(t,i,"labor") = 1 - pm_cost_share_crops(t,i,"capital"); ); diff --git a/modules/38_factor_costs/sticky_labor/declarations.gms b/modules/38_factor_costs/sticky_labor/declarations.gms index 61a9dd1ebb..3d926064b4 100644 --- a/modules/38_factor_costs/sticky_labor/declarations.gms +++ b/modules/38_factor_costs/sticky_labor/declarations.gms @@ -6,28 +6,28 @@ *** | Contact: magpie@pik-potsdam.de equations - q38_cost_prod_labor(i) Regional labor input costs for crop production (mio USD05MER) - q38_cost_prod_capital(i) Regional capital input costs for crop production (mio USD05MER) - q38_investment_immobile(j,kcr) Cellular immobile investments into farm capital (mio USD05MER) - q38_investment_mobile(j) Cellular mobile investments into farm capital (mio USD05MER) + q38_cost_prod_labor(i) Regional labor input costs for crop production (mio USD17MER) + q38_cost_prod_capital(i) Regional capital input costs for crop production (mio USD17MER) + q38_investment_immobile(j,kcr) Cellular immobile investments into farm capital (mio USD17MER) + q38_investment_mobile(j) Cellular mobile investments into farm capital (mio USD17MER) q38_ces_prodfun(j,kcr) CES production function for one unit of output (1) q38_labor_share_target(j) Enforces minimum labor cost share out of factor costs (1) ; positive variables - vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio USD05MER per yr) - v38_investment_immobile(j,kcr) Investment costs in immobile farm capital (mio USD05MER per yr) - v38_investment_mobile(j) Investment costs in mobile farm capital (mio USD05MER per yr) + vm_cost_prod_crop(i,factors) Regional factor costs of capital and labor for crop production (mio USD17MER per yr) + v38_investment_immobile(j,kcr) Investment costs in immobile farm capital (mio USD17MER per yr) + v38_investment_mobile(j) Investment costs in mobile farm capital (mio USD17MER per yr) v38_laborhours_need(j,kcr) Labor required per unit of output (hours per ton DM) - v38_capital_need(j,kcr,mobil38) Captial required per unit of output (USD05MER per ton DM) + v38_capital_need(j,kcr,mobil38) Captial required per unit of output (USD17MER per ton DM) v38_relax_CES_lp(j,kcr) Variable to make CES function feasible in linearized model (1) ; parameters - p38_labor_need(t,i,kcr) Labor input costs per unit of output (USD05MER per ton DM) - p38_capital_need(t,i,kcr,mobil38) Capital requirements per unit of output (USD05MER per ton DM) - p38_capital_immobile(t,j,kcr) Preexisting immobile capital stocks before investment (mio USD05MER) - p38_capital_mobile(t,j) Preexisting mobile capital stocks before investment (mio USD05MER) + p38_labor_need(t,i,kcr) Labor input costs per unit of output (USD17MER per ton DM) + p38_capital_need(t,i,kcr,mobil38) Capital requirements per unit of output (USD17MER per ton DM) + p38_capital_immobile(t,j,kcr) Preexisting immobile capital stocks before investment (mio USD17MER) + p38_capital_mobile(t,j) Preexisting mobile capital stocks before investment (mio USD17MER) pm_cost_share_crops(t,i,factors) Capital and labor shares of the regional factor costs for crop production (1) p38_share_calibration(i) Summation factor used to calibrate calculated capital shares with historical values (1) @@ -40,7 +40,7 @@ parameters p38_intr_depr(t,i) Factor from interest and depreciation rate (1) - i38_fac_req(t_all,i,kcr) Factor requirements (USD05MER per tDM) + i38_fac_req(t_all,i,kcr) Factor requirements (USD17MER per tDM) ; scalars @@ -49,16 +49,16 @@ scalars *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio USD05MER per yr) - ov38_investment_immobile(t,j,kcr,type) Investment costs in immobile farm capital (mio USD05MER per yr) - ov38_investment_mobile(t,j,type) Investment costs in mobile farm capital (mio USD05MER per yr) + ov_cost_prod_crop(t,i,factors,type) Regional factor costs of capital and labor for crop production (mio USD17MER per yr) + ov38_investment_immobile(t,j,kcr,type) Investment costs in immobile farm capital (mio USD17MER per yr) + ov38_investment_mobile(t,j,type) Investment costs in mobile farm capital (mio USD17MER per yr) ov38_laborhours_need(t,j,kcr,type) Labor required per unit of output (hours per ton DM) - ov38_capital_need(t,j,kcr,mobil38,type) Captial required per unit of output (USD05MER per ton DM) + ov38_capital_need(t,j,kcr,mobil38,type) Captial required per unit of output (USD17MER per ton DM) ov38_relax_CES_lp(t,j,kcr,type) Variable to make CES function feasible in linearized model (1) - oq38_cost_prod_labor(t,i,type) Regional labor input costs for crop production (mio USD05MER) - oq38_cost_prod_capital(t,i,type) Regional capital input costs for crop production (mio USD05MER) - oq38_investment_immobile(t,j,kcr,type) Cellular immobile investments into farm capital (mio USD05MER) - oq38_investment_mobile(t,j,type) Cellular mobile investments into farm capital (mio USD05MER) + oq38_cost_prod_labor(t,i,type) Regional labor input costs for crop production (mio USD17MER) + oq38_cost_prod_capital(t,i,type) Regional capital input costs for crop production (mio USD17MER) + oq38_investment_immobile(t,j,kcr,type) Cellular immobile investments into farm capital (mio USD17MER) + oq38_investment_mobile(t,j,type) Cellular mobile investments into farm capital (mio USD17MER) oq38_ces_prodfun(t,j,kcr,type) CES production function for one unit of output (1) oq38_labor_share_target(t,j,type) Enforces minimum labor cost share out of factor costs (1) ; diff --git a/modules/38_factor_costs/sticky_labor/input.gms b/modules/38_factor_costs/sticky_labor/input.gms index f19986da00..0e96a2a567 100644 --- a/modules/38_factor_costs/sticky_labor/input.gms +++ b/modules/38_factor_costs/sticky_labor/input.gms @@ -20,7 +20,7 @@ s38_targetyear_labor_share Year for which the target labor share should be set ( s38_target_fulfillment Share by which a region moves from its baseline labor share towards the target value (1) / 0.5 / ; -parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD05MER per tDM) +parameter f38_fac_req(kcr) Factor requirement costs in 2005 (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao.csv" @@ -28,7 +28,7 @@ $offdelim / ; -parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD05MER per tDM) +parameter f38_fac_req_fao_reg(t_all,i,kcr) Factor requirement costs (USD17MER per tDM) / $ondelim $include "./modules/38_factor_costs/input/f38_fac_req_fao_regional.cs4" diff --git a/modules/38_factor_costs/sticky_labor/preloop.gms b/modules/38_factor_costs/sticky_labor/preloop.gms index 8fb3829096..031692e316 100644 --- a/modules/38_factor_costs/sticky_labor/preloop.gms +++ b/modules/38_factor_costs/sticky_labor/preloop.gms @@ -11,9 +11,9 @@ s38_ces_elast_par = (1/s38_ces_elast_subst) - 1 ; p38_intr_depr(t,i) = (1-s38_depreciation_rate) * pm_interest(t,i)/(1+pm_interest(t,i)) + s38_depreciation_rate; * calculate labor/capital cost shares from regression -p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f38_reg_parameters("intercept")); +p38_share_calibration(i) = f38_historical_share("y2010",i)-(f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")); pm_cost_share_crops(t,i,"capital")$(m_year(t)<2010) = f38_historical_share(t,i); -pm_cost_share_crops(t,i,"capital")$(m_year(t)>=2010) = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f38_reg_parameters("intercept")+p38_share_calibration(i); +pm_cost_share_crops(t,i,"capital")$(m_year(t)>=2010) = f38_reg_parameters("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f38_reg_parameters("intercept")+p38_share_calibration(i); pm_cost_share_crops(t,i,"labor") = 1 - pm_cost_share_crops(t,i,"capital"); diff --git a/modules/39_landconversion/calib/declarations.gms b/modules/39_landconversion/calib/declarations.gms index 0e083ba71b..aab3f9d382 100644 --- a/modules/39_landconversion/calib/declarations.gms +++ b/modules/39_landconversion/calib/declarations.gms @@ -6,22 +6,22 @@ *** | Contact: magpie@pik-potsdam.de equations - q39_cost_landcon(j,land) Calculation of cellular landconversion costs (mio. USD05MER per yr) + q39_cost_landcon(j,land) Calculation of cellular landconversion costs (mio. USD17MER per yr) ; variables - vm_cost_landcon(j,land) Costs for land expansion and reduction (mio. USD05MER per yr) + vm_cost_landcon(j,land) Costs for land expansion and reduction (mio. USD17MER per yr) ; parameters - i39_cost_establish(t,i,land) Land expansion costs (USD05MER per hectare) - i39_reward_reduction(t,i,land) Reward for land reduction (USD05MER per hectare) + i39_cost_establish(t,i,land) Land expansion costs (USD17MER per hectare) + i39_reward_reduction(t,i,land) Reward for land reduction (USD17MER per hectare) i39_calib(t,i,type39) Calibration factor for costs of cropland expansion and rewards for cropland reduction (1) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_landcon(t,j,land,type) Costs for land expansion and reduction (mio. USD05MER per yr) - oq39_cost_landcon(t,j,land,type) Calculation of cellular landconversion costs (mio. USD05MER per yr) + ov_cost_landcon(t,j,land,type) Costs for land expansion and reduction (mio. USD17MER per yr) + oq39_cost_landcon(t,j,land,type) Calculation of cellular landconversion costs (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/39_landconversion/calib/input.gms b/modules/39_landconversion/calib/input.gms index 2c1e0e0493..3846fa87ae 100644 --- a/modules/39_landconversion/calib/input.gms +++ b/modules/39_landconversion/calib/input.gms @@ -6,11 +6,11 @@ *** | Contact: magpie@pik-potsdam.de scalars - s39_cost_establish_crop Cost for cropland expansion before calibration (USD05MER per hectare) / 10000 / - s39_reward_crop_reduction Reward for cropland reduction before calibration (USD05MER per hectare) / 6000 / - s39_cost_establish_past Cost for pasture land expansion (USD05MER per hectare) / 8000 / - s39_cost_establish_forestry Cost for foresty land expansion (USD05MER per hectare) / 1000 / - s39_cost_establish_urban Cost for urban land expansion (USD05MER per hectare) / 10000 / + s39_cost_establish_crop Cost for cropland expansion before calibration (USD17MER per hectare) / 12300 / + s39_reward_crop_reduction Reward for cropland reduction before calibration (USD17MER per hectare) / 7380 / + s39_cost_establish_past Cost for pasture land expansion (USD17MER per hectare) / 9840 / + s39_cost_establish_forestry Cost for foresty land expansion (USD17MER per hectare) / 1230 / + s39_cost_establish_urban Cost for urban land expansion (USD17MER per hectare) / 12300 / s39_ignore_calib Switch for ignoring calibration factors (1) / 0 / ; diff --git a/modules/40_transport/gtap_nov12/declarations.gms b/modules/40_transport/gtap_nov12/declarations.gms index e6fd78ef46..b701c8730d 100644 --- a/modules/40_transport/gtap_nov12/declarations.gms +++ b/modules/40_transport/gtap_nov12/declarations.gms @@ -6,16 +6,16 @@ *** | Contact: magpie@pik-potsdam.de equation -q40_cost_transport(j,k) Cellular transport costs for k (mio. USD05MER per yr) +q40_cost_transport(j,k) Cellular transport costs for k (mio. USD17MER per yr) ; variables - vm_cost_transp(j,k) Transportation costs (mio. USD05MER per yr) + vm_cost_transp(j,k) Transportation costs (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_transp(t,j,k,type) Transportation costs (mio. USD05MER per yr) - oq40_cost_transport(t,j,k,type) Cellular transport costs for k (mio. USD05MER per yr) + ov_cost_transp(t,j,k,type) Transportation costs (mio. USD17MER per yr) + oq40_cost_transport(t,j,k,type) Cellular transport costs for k (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/40_transport/gtap_nov12/input.gms b/modules/40_transport/gtap_nov12/input.gms index 1839f20fc1..e52e0eec26 100644 --- a/modules/40_transport/gtap_nov12/input.gms +++ b/modules/40_transport/gtap_nov12/input.gms @@ -7,7 +7,7 @@ scalars - s40_pasture_transport_costs Transport costs for pasture (USD05MER per tDM per min) / 0 / + s40_pasture_transport_costs Transport costs for pasture (USD17MER per tDM per min) / 0 / ; @@ -20,7 +20,7 @@ $offdelim / ; -parameter f40_transport_costs(kall) Relative transport costs (USD05MER per tDM per min) +parameter f40_transport_costs(kall) Relative transport costs (USD17MER per tDM per min) / $ondelim $include "./modules/40_transport/gtap_nov12/input/f40_transport_costs.csv" diff --git a/modules/40_transport/off/declarations.gms b/modules/40_transport/off/declarations.gms index 16668b9512..8a2e5b87f8 100644 --- a/modules/40_transport/off/declarations.gms +++ b/modules/40_transport/off/declarations.gms @@ -7,11 +7,11 @@ variables - vm_cost_transp(j,k) Transportation costs (mio. USD05MER) + vm_cost_transp(j,k) Transportation costs (mio. USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_transp(t,j,k,type) Transportation costs (mio. USD05MER) + ov_cost_transp(t,j,k,type) Transportation costs (mio. USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/41_area_equipped_for_irrigation/endo_apr13/declarations.gms b/modules/41_area_equipped_for_irrigation/endo_apr13/declarations.gms index 54e955eca7..16584f9f33 100644 --- a/modules/41_area_equipped_for_irrigation/endo_apr13/declarations.gms +++ b/modules/41_area_equipped_for_irrigation/endo_apr13/declarations.gms @@ -8,11 +8,11 @@ parameters p41_AEI_start(t,j) Area equipped for irrigation at the beginning of each time step (mio. ha) pc41_AEI_start(j) Area equipped for irrigation at the beginning of current time step (mio. ha) - pc41_unitcost_AEI(i) Unit cost of AEI expansion (USD04MER per ha) + pc41_unitcost_AEI(i) Unit cost of AEI expansion (USD17MER per ha) ; variables - vm_cost_AEI(i) Annuitized irrigation expansion costs (mio. USD04MER per yr) + vm_cost_AEI(i) Annuitized irrigation expansion costs (mio. USD17MER per yr) ; positive variables @@ -21,14 +21,14 @@ positive variables equations q41_area_irrig(j) Irrigation area constraint (mio. ha) - q41_cost_AEI(i) Calculation of costs of irrigation area expansion (mio. USD04MER) + q41_cost_AEI(i) Calculation of costs of irrigation area expansion (mio. USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_AEI(t,i,type) Annuitized irrigation expansion costs (mio. USD04MER per yr) + ov_cost_AEI(t,i,type) Annuitized irrigation expansion costs (mio. USD17MER per yr) ov_AEI(t,j,type) Area equipped for irrigation in each grid cell (mio. ha) oq41_area_irrig(t,j,type) Irrigation area constraint (mio. ha) - oq41_cost_AEI(t,i,type) Calculation of costs of irrigation area expansion (mio. USD04MER) + oq41_cost_AEI(t,i,type) Calculation of costs of irrigation area expansion (mio. USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/41_area_equipped_for_irrigation/endo_apr13/input.gms b/modules/41_area_equipped_for_irrigation/endo_apr13/input.gms index de669f4257..33c1d8281a 100644 --- a/modules/41_area_equipped_for_irrigation/endo_apr13/input.gms +++ b/modules/41_area_equipped_for_irrigation/endo_apr13/input.gms @@ -8,10 +8,10 @@ $setglobal c41_initial_irrigation_area LUH2v2 scalars -s41_AEI_depreciation Depreciation rate in capital value of irrigation infrastructure (USD05PPP per USD05PPP) / 0 / +s41_AEI_depreciation Depreciation rate in capital value of irrigation infrastructure (USD17PPP per USD17PPP) / 0 / ; -table f41_c_irrig(t_all,i) Irrigation investment costs (USD04MER per ha) +table f41_c_irrig(t_all,i) Irrigation investment costs (USD17MER per ha) $ondelim $include "./modules/41_area_equipped_for_irrigation/endo_apr13/input/f41_c_irrig.csv" $offdelim diff --git a/modules/41_area_equipped_for_irrigation/static/declarations.gms b/modules/41_area_equipped_for_irrigation/static/declarations.gms index 02bab0eb4d..221448d797 100644 --- a/modules/41_area_equipped_for_irrigation/static/declarations.gms +++ b/modules/41_area_equipped_for_irrigation/static/declarations.gms @@ -6,7 +6,7 @@ *** | Contact: magpie@pik-potsdam.de variables - vm_cost_AEI(i) Irrigation expansion costs (mio. USD04MER) + vm_cost_AEI(i) Irrigation expansion costs (mio. USD17MER) ; positive variables @@ -19,7 +19,7 @@ equations *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_AEI(t,i,type) Irrigation expansion costs (mio. USD04MER) + ov_cost_AEI(t,i,type) Irrigation expansion costs (mio. USD17MER) ov_AEI(t,j,type) Area equipped for irrigation in each grid cell (mio. ha) oq41_area_irrig(t,j,type) Irrigation area constraint (mio. ha) ; diff --git a/modules/42_water_demand/agr_sector_aug13/declarations.gms b/modules/42_water_demand/agr_sector_aug13/declarations.gms index c4a2326d97..3562706f56 100644 --- a/modules/42_water_demand/agr_sector_aug13/declarations.gms +++ b/modules/42_water_demand/agr_sector_aug13/declarations.gms @@ -16,27 +16,27 @@ parameters p42_efp_fader(t_all) Determines the fading in of environmental flow policy (1) p42_country_dummy(iso) Dummy parameter indicating whether country is affected by EFP (1) p42_EFP_region_shr(t_all,i) Weighted share of region with regards to EFP (1) - ic42_pumping_cost(i) Parameter to capture values for pumping costs in a particular time step (USD05MER per m^3) + ic42_pumping_cost(i) Parameter to capture values for pumping costs in a particular time step (USD17MER per m^3) i42_watdem_total(t,j,watdem_ineldo,wtype) Non-agricultural water demand for entire year used in post-processing (mio. m^3 per yr) ; equations q42_water_demand(wat_dem,j) Water withdrawals of different sectors (mio. m^3 per yr) - q42_water_cost(i) Total cost of pumping irrigation water (USD05MER per yr) + q42_water_cost(i) Total cost of pumping irrigation water (USD17MER per yr) ; positive variables vm_watdem(wat_dem,j) Water demand from different sectors (mio. m^3 per yr) v42_irrig_eff(j) Irrigation efficiency (1) - vm_water_cost(i) Cost of irrigation water (USD05MER per m^3) + vm_water_cost(i) Cost of irrigation water (USD17MER per m^3) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_watdem(t,wat_dem,j,type) Water demand from different sectors (mio. m^3 per yr) ov42_irrig_eff(t,j,type) Irrigation efficiency (1) - ov_water_cost(t,i,type) Cost of irrigation water (USD05MER per m^3) + ov_water_cost(t,i,type) Cost of irrigation water (USD17MER per m^3) oq42_water_demand(t,wat_dem,j,type) Water withdrawals of different sectors (mio. m^3 per yr) - oq42_water_cost(t,i,type) Total cost of pumping irrigation water (USD05MER per yr) + oq42_water_cost(t,i,type) Total cost of pumping irrigation water (USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/42_water_demand/agr_sector_aug13/input.gms b/modules/42_water_demand/agr_sector_aug13/input.gms index 30d9b37dfc..61ff52999b 100644 --- a/modules/42_water_demand/agr_sector_aug13/input.gms +++ b/modules/42_water_demand/agr_sector_aug13/input.gms @@ -109,7 +109,7 @@ sets * Costs of pumping are calculated for India as per methodology in forthcoming paper by Singh et.al. parameter -f42_pumping_cost(t_all,i) Cost of pumping irrigation water (USD05MER per m^3) +f42_pumping_cost(t_all,i) Cost of pumping irrigation water (USD17MER per m^3) / $ondelim $include "./modules/42_water_demand/input/f42_pumping_cost.cs4" diff --git a/modules/42_water_demand/all_sectors_aug13/declarations.gms b/modules/42_water_demand/all_sectors_aug13/declarations.gms index e94a089e6a..1fa50b6846 100644 --- a/modules/42_water_demand/all_sectors_aug13/declarations.gms +++ b/modules/42_water_demand/all_sectors_aug13/declarations.gms @@ -16,27 +16,27 @@ parameters p42_efp_fader(t_all) Determines the fading in of environmental flow policy (1) p42_country_dummy(iso) Dummy parameter indicating whether country is affected by EFP (1) p42_EFP_region_shr(t_all,i) Weighted share of region with regards to EFP (1) - ic42_pumping_cost(i) Parameter to capture values for pumping costs in a particular time step (USD05MER per m^3) + ic42_pumping_cost(i) Parameter to capture values for pumping costs in a particular time step (USD17MER per m^3) i42_watdem_total(t,j,watdem_ineldo,wtype) Non-agricultural water demand for entire year used in post-processing (mio. m^3 per yr) ; equations q42_water_demand(wat_dem,j) Water withdrawals of different sectors (mio. m^3 per yr) - q42_water_cost(i) Total cost of pumping irrigation water (USD05MER per yr) + q42_water_cost(i) Total cost of pumping irrigation water (USD17MER per yr) ; positive variables vm_watdem(wat_dem,j) Amount of water needed in different sectors (mio. m^3 per yr) v42_irrig_eff(j) Irrigation efficiency (1) - vm_water_cost(i) Cost of irrigation water (USD05MER per m^3) + vm_water_cost(i) Cost of irrigation water (USD17MER per m^3) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_watdem(t,wat_dem,j,type) Amount of water needed in different sectors (mio. m^3 per yr) ov42_irrig_eff(t,j,type) Irrigation efficiency (1) - ov_water_cost(t,i,type) Cost of irrigation water (USD05MER per m^3) + ov_water_cost(t,i,type) Cost of irrigation water (USD17MER per m^3) oq42_water_demand(t,wat_dem,j,type) Water withdrawals of different sectors (mio. m^3 per yr) - oq42_water_cost(t,i,type) Total cost of pumping irrigation water (USD05MER per yr) + oq42_water_cost(t,i,type) Total cost of pumping irrigation water (USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/42_water_demand/all_sectors_aug13/input.gms b/modules/42_water_demand/all_sectors_aug13/input.gms index ba297acdfd..6f370d255d 100644 --- a/modules/42_water_demand/all_sectors_aug13/input.gms +++ b/modules/42_water_demand/all_sectors_aug13/input.gms @@ -123,7 +123,7 @@ $setglobal c42_env_flow_policy off * Costs of pumping are calculated for India as per methodology in forthcoming paper by Singh et.al. parameter -f42_pumping_cost(t_all,i) Cost of pumping irrigation water (USD05MER per m^3) +f42_pumping_cost(t_all,i) Cost of pumping irrigation water (USD17MER per m^3) / $ondelim $include "./modules/42_water_demand/input/f42_pumping_cost.cs4" diff --git a/modules/44_biodiversity/bii_target/declarations.gms b/modules/44_biodiversity/bii_target/declarations.gms index feea2001ee..c73b4a6f04 100644 --- a/modules/44_biodiversity/bii_target/declarations.gms +++ b/modules/44_biodiversity/bii_target/declarations.gms @@ -7,7 +7,7 @@ positive variables - vm_cost_bv_loss(j) Biodiversity cost (mio USD) + vm_cost_bv_loss(j) Biodiversity cost (mio USD17MER) vm_bv(j,landcover44,potnatveg) Biodiversity stock for all land cover classes (Mha) v44_bii(i,biome44) Biodiversity Intactness Index BII (1) v44_bii_missing(i,biome44) Missing BII increase for compliance with BII target (1) @@ -22,19 +22,19 @@ parameters equations q44_bii(i,biome44) Biodiversity Intactness Index BII (1) q44_bii_target(i,biome44) Missing BII increase for compliance with BII target (1) - q44_cost(i) Biodiversity cost (mio USD) + q44_cost(i) Biodiversity cost (mio USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD) + ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD17MER) ov_bv(t,j,landcover44,potnatveg,type) Biodiversity stock for all land cover classes (Mha) ov44_bii(t,i,biome44,type) Biodiversity Intactness Index BII (1) ov44_bii_missing(t,i,biome44,type) Missing BII increase for compliance with BII target (1) oq44_bii(t,i,biome44,type) Biodiversity Intactness Index BII (1) oq44_bii_target(t,i,biome44,type) Missing BII increase for compliance with BII target (1) - oq44_cost(t,i,type) Biodiversity cost (mio USD) + oq44_cost(t,i,type) Biodiversity cost (mio USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/44_biodiversity/bii_target/input.gms b/modules/44_biodiversity/bii_target/input.gms index 26deafacfd..624e4e8799 100644 --- a/modules/44_biodiversity/bii_target/input.gms +++ b/modules/44_biodiversity/bii_target/input.gms @@ -10,7 +10,7 @@ scalars c44_bii_decrease Implementation of lower bound for BII (binary) / 1 / s44_target_year Year in which the BII lower bound is reached (1) / 2100 / s44_start_year Start year for interpolation towards BII lower bound (1) / 2025 / - s44_cost_bii_missing Technical costs for missing BII increase (USD per unit of BII) / 1e+06 / + s44_cost_bii_missing Technical costs for missing BII increase (USD17MER per unit of BII) / 1e+06 / ; diff --git a/modules/44_biodiversity/bii_target_apr24/declarations.gms b/modules/44_biodiversity/bii_target_apr24/declarations.gms index 419d24471c..8beb0dabed 100644 --- a/modules/44_biodiversity/bii_target_apr24/declarations.gms +++ b/modules/44_biodiversity/bii_target_apr24/declarations.gms @@ -7,7 +7,7 @@ positive variables - vm_cost_bv_loss(j) Biodiversity cost (mio USD) + vm_cost_bv_loss(j) Biodiversity cost (mio USD17MER) vm_bv(j,landcover44,potnatveg) Biodiversity stock for all land cover classes (Mha) v44_bii(i,biome44) Biodiversity Intactness Index BII (1) v44_bii_missing(i,biome44) Missing BII increase for compliance with BII target (1) @@ -22,19 +22,19 @@ parameters equations q44_bii(i,biome44) Biodiversity Intactness Index BII (1) q44_bii_target(i,biome44) Missing BII increase for compliance with BII target (1) - q44_cost(i) Biodiversity cost (mio USD) + q44_cost(i) Biodiversity cost (mio USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD) + ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD17MER) ov_bv(t,j,landcover44,potnatveg,type) Biodiversity stock for all land cover classes (Mha) ov44_bii(t,i,biome44,type) Biodiversity Intactness Index BII (1) ov44_bii_missing(t,i,biome44,type) Missing BII increase for compliance with BII target (1) oq44_bii(t,i,biome44,type) Biodiversity Intactness Index BII (1) oq44_bii_target(t,i,biome44,type) Missing BII increase for compliance with BII target (1) - oq44_cost(t,i,type) Biodiversity cost (mio USD) + oq44_cost(t,i,type) Biodiversity cost (mio USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/44_biodiversity/bii_target_apr24/input.gms b/modules/44_biodiversity/bii_target_apr24/input.gms index f5d19800c5..b04e933504 100644 --- a/modules/44_biodiversity/bii_target_apr24/input.gms +++ b/modules/44_biodiversity/bii_target_apr24/input.gms @@ -10,7 +10,7 @@ scalars c44_bii_decrease Implementation of lower bound for BII (binary) / 1 / s44_target_year Year in which the BII lower bound is reached (1) / 2100 / s44_start_year Start year for interpolation towards BII lower bound (1) / 2025 / - s44_cost_bii_missing Technical costs for missing BII increase (USD per unit of BII) / 1e+06 / + s44_cost_bii_missing Technical costs for missing BII increase (USD17MER per unit of BII) / 1e+06 / ; diff --git a/modules/44_biodiversity/bv_btc_mar21/declarations.gms b/modules/44_biodiversity/bv_btc_mar21/declarations.gms index 5f6df38c0d..37dbf62bdc 100644 --- a/modules/44_biodiversity/bv_btc_mar21/declarations.gms +++ b/modules/44_biodiversity/bv_btc_mar21/declarations.gms @@ -6,12 +6,12 @@ *** | Contact: magpie@pik-potsdam.de parameters - p44_price_bv_loss(t_all) Price (subsidy) for biodiversity stock loss (gain) (USD per ha) + p44_price_bv_loss(t_all) Price (subsidy) for biodiversity stock loss (gain) (USD17MER per ha) ; variables v44_bv_loss(j) Change in biodiversity stock (Mha per year) - vm_cost_bv_loss(j) Biodiversity cost (mio USD) + vm_cost_bv_loss(j) Biodiversity cost (mio USD17MER) ; positive variables @@ -22,19 +22,19 @@ positive variables equations q44_bv_loss(j) Change in biodiversity stock (Mha per year) q44_bv_weighted(j) Range-rarity weighted biodiversity stock (Mha) - q44_cost_bv_loss(j) Cost of biodiversity loss (mio USD) + q44_cost_bv_loss(j) Cost of biodiversity loss (mio USD17MER) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov44_bv_loss(t,j,type) Change in biodiversity stock (Mha per year) - ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD) + ov_cost_bv_loss(t,j,type) Biodiversity cost (mio USD17MER) ov_bv(t,j,landcover44,potnatveg,type) Biodiversity stock for all land cover classes (Mha) ov44_bv_weighted(t,j,type) Range-rarity weighted biodiversity stock (Mha) oq44_bv_loss(t,j,type) Change in biodiversity stock (Mha per year) oq44_bv_weighted(t,j,type) Range-rarity weighted biodiversity stock (Mha) - oq44_cost_bv_loss(t,j,type) Cost of biodiversity loss (mio USD) + oq44_cost_bv_loss(t,j,type) Cost of biodiversity loss (mio USD17MER) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/44_biodiversity/bv_btc_mar21/input.gms b/modules/44_biodiversity/bv_btc_mar21/input.gms index 66046b9a37..5336cf271b 100644 --- a/modules/44_biodiversity/bv_btc_mar21/input.gms +++ b/modules/44_biodiversity/bv_btc_mar21/input.gms @@ -8,8 +8,8 @@ scalars s44_start_year Start year of biodiversity price (1) / 2025 / s44_target_year Target year of biodiversity price (1) / 2100 / - s44_start_price Price for biodiversity stock loss in start year (USD per ha) / 0 / - s44_target_price Price for biodiversity stock loss in target year (USD per ha) / 0 / + s44_start_price Price for biodiversity stock loss in start year (USD17MER per ha) / 0 / + s44_target_price Price for biodiversity stock loss in target year (USD17MER per ha) / 0 / ; table fm_bii_coeff(bii_class44,potnatveg) Biodiversity Intactness Index coefficients (unitless) diff --git a/modules/50_nr_soil_budget/macceff_aug22/declarations.gms b/modules/50_nr_soil_budget/macceff_aug22/declarations.gms index a4b41a4606..51180277ef 100644 --- a/modules/50_nr_soil_budget/macceff_aug22/declarations.gms +++ b/modules/50_nr_soil_budget/macceff_aug22/declarations.gms @@ -8,7 +8,7 @@ positive variables vm_nr_inorg_fert_reg(i,land_ag) Inorganic fertilizer application (Tg N per yr) - vm_nr_inorg_fert_costs(i) Cost of inorganic fertilizers (mio. USD05MER per yr) + vm_nr_inorg_fert_costs(i) Cost of inorganic fertilizers (mio. USD17MER per yr) vm_nr_eff(i) Cropland nutrient uptake efficiency (Tg N per yr) vm_nr_eff_pasture(i) Pasture nutrient uptake efficiency (Tg N per yr) v50_nr_inputs(i) Total inputs to croplands (Tg N per yr) @@ -21,7 +21,7 @@ positive variables ; equations - q50_nr_cost_fert(i) Fertilizer costs (mio. USD05MER per yr) + q50_nr_cost_fert(i) Fertilizer costs (mio. USD17MER per yr) q50_nr_bal_crp(i) Cropland nutrient inputs have to equal withdrawals and losses (Tg N per yr) q50_nr_withdrawals(i,kcr) Calculating nr withdrawals (Tg N per yr) q50_nr_inputs(i) Calculating nr withdrawals (Tg N per yr) @@ -49,7 +49,7 @@ parameters *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_nr_inorg_fert_reg(t,i,land_ag,type) Inorganic fertilizer application (Tg N per yr) - ov_nr_inorg_fert_costs(t,i,type) Cost of inorganic fertilizers (mio. USD05MER per yr) + ov_nr_inorg_fert_costs(t,i,type) Cost of inorganic fertilizers (mio. USD17MER per yr) ov_nr_eff(t,i,type) Cropland nutrient uptake efficiency (Tg N per yr) ov_nr_eff_pasture(t,i,type) Pasture nutrient uptake efficiency (Tg N per yr) ov50_nr_inputs(t,i,type) Total inputs to croplands (Tg N per yr) @@ -59,7 +59,7 @@ parameters ov50_nr_withdrawals_pasture(t,i,type) Withdrawals of Nr from pasture soils (Tg N per yr) ov50_nr_surplus_pasture(t,i,type) Total Nr surplus on pasture soils (Tg N per yr) ov50_nr_deposition(t,i,land,type) Atmospheric deposition (Tg N per yr) - oq50_nr_cost_fert(t,i,type) Fertilizer costs (mio. USD05MER per yr) + oq50_nr_cost_fert(t,i,type) Fertilizer costs (mio. USD17MER per yr) oq50_nr_bal_crp(t,i,type) Cropland nutrient inputs have to equal withdrawals and losses (Tg N per yr) oq50_nr_withdrawals(t,i,kcr,type) Calculating nr withdrawals (Tg N per yr) oq50_nr_inputs(t,i,type) Calculating nr withdrawals (Tg N per yr) diff --git a/modules/50_nr_soil_budget/macceff_aug22/input.gms b/modules/50_nr_soil_budget/macceff_aug22/input.gms index 6f36b439c9..68bc8f50eb 100644 --- a/modules/50_nr_soil_budget/macceff_aug22/input.gms +++ b/modules/50_nr_soil_budget/macceff_aug22/input.gms @@ -26,7 +26,7 @@ $setglobal c50_dep_scen history * options: history scalar - s50_fertilizer_costs Costs of fertilizer (USD05MER per tN) / 600 / + s50_fertilizer_costs Costs of fertilizer (USD17MER per tN) / 738 / s50_maccs_global_ef Do maccs assume global emission factor (binary) /1/ s50_maccs_implicit_nue_glo Global nitrogen use efficiency implicit to MACCs /0.5/ ; diff --git a/modules/54_phosphorus/off/declarations.gms b/modules/54_phosphorus/off/declarations.gms index 92e20738f7..95fdfadbd0 100644 --- a/modules/54_phosphorus/off/declarations.gms +++ b/modules/54_phosphorus/off/declarations.gms @@ -7,11 +7,11 @@ variables - vm_p_fert_costs(i) costs for mineral fertilizers (mio. USD05MER per yr) + vm_p_fert_costs(i) costs for mineral fertilizers (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_p_fert_costs(t,i,type) costs for mineral fertilizers (mio. USD05MER per yr) + ov_p_fert_costs(t,i,type) costs for mineral fertilizers (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/56_ghg_policy/price_aug22/declarations.gms b/modules/56_ghg_policy/price_aug22/declarations.gms index 70e98e4264..2c10d62171 100644 --- a/modules/56_ghg_policy/price_aug22/declarations.gms +++ b/modules/56_ghg_policy/price_aug22/declarations.gms @@ -6,9 +6,9 @@ *** | Contact: magpie@pik-potsdam.de parameters - im_pollutant_prices(t_all,i,pollutants,emis_source) Certificate prices for N2O-N CH4 CO2-C used in the model (USD05MER per Mg) - p56_pollutant_prices_input(t_all,i,pollutants,emis_source) Certificate prices for N2O-N CH4 CO2-C from input files (USD05MER per Mg) - p56_c_price_aff(t_all,i,ac) C price used for afforestation decision-making (USD05MER per tC) + im_pollutant_prices(t_all,i,pollutants,emis_source) Certificate prices for N2O-N CH4 CO2-C used in the model (USD17MER per Mg) + p56_pollutant_prices_input(t_all,i,pollutants,emis_source) Certificate prices for N2O-N CH4 CO2-C from input files (USD17MER per Mg) + p56_c_price_aff(t_all,i,ac) C price used for afforestation decision-making (USD17MER per tC) pc56_c_price_induced_aff Helper for fixing C price driven afforestation to zero for historic time steps (binary) p56_region_price_shr(t_all,i) GHG price share of the region (1) p56_country_dummy(iso) Dummy parameter indicating whether country is affected by selected GHG policy (1) @@ -19,11 +19,11 @@ parameters ; equations - q56_emission_costs(i) Calculation of total emission costs (mio. USD05MER per yr) - q56_emission_cost_annual(i,emis_annual) Calculation of regional costs for annual emissions (mio. USD05MER per yr) - q56_emission_cost_oneoff(i,emis_oneoff) Calculation of regional costs for emissions occuring only once in time (mio. USD05MER per yr) - q56_reward_cdr_aff_reg(i) Regional revenues for carbon captured by afforestation (mio. USD05MER per yr) - q56_reward_cdr_aff(j) Cellular revenues for carbon captured by afforestation (mio. USD05MER per yr) + q56_emission_costs(i) Calculation of total emission costs (mio. USD17MER per yr) + q56_emission_cost_annual(i,emis_annual) Calculation of regional costs for annual emissions (mio. USD17MER per yr) + q56_emission_cost_oneoff(i,emis_oneoff) Calculation of regional costs for emissions occuring only once in time (mio. USD17MER per yr) + q56_reward_cdr_aff_reg(i) Regional revenues for carbon captured by afforestation (mio. USD17MER per yr) + q56_reward_cdr_aff(j) Cellular revenues for carbon captured by afforestation (mio. USD17MER per yr) q56_emis_pricing(i,pollutants,emis_source) Calculation of annual CO2 emissions for pricing (Tg per yr) q56_emis_pricing_co2(i,emis_oneoff) Calculation of annual CO2 emissions for pricing (Tg per yr) ; @@ -34,28 +34,28 @@ positive variables variables - vm_emission_costs(i) Costs for emission rights for pollutants and greenhouse gases (mio. USD05MER per yr) + vm_emission_costs(i) Costs for emission rights for pollutants and greenhouse gases (mio. USD17MER per yr) vm_emissions_reg(i,emis_source,pollutants) Regional emissions by source and gas after technical mitigation N CH4 C (Tg per yr) v56_emis_pricing(i,emis_source,pollutants) Regional emissions by source and gas after technical mitigation N CH4 C (Tg per yr) - v56_emission_cost(i,emis_source) GHG emissions cost (mio. USD05MER per yr) - vm_reward_cdr_aff(i) Regional average annual expected revenue from afforestation (mio. USD05MER per yr) - v56_reward_cdr_aff(j) Cellular average annual expected revenue from afforestation (mio. USD05MER per yr) + v56_emission_cost(i,emis_source) GHG emissions cost (mio. USD17MER per yr) + vm_reward_cdr_aff(i) Regional average annual expected revenue from afforestation (mio. USD17MER per yr) + v56_reward_cdr_aff(j) Cellular average annual expected revenue from afforestation (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_carbon_stock(t,j,land,c_pools,stockType,type) Carbon stock in vegetation soil and litter for different land types (mio. tC) - ov_emission_costs(t,i,type) Costs for emission rights for pollutants and greenhouse gases (mio. USD05MER per yr) + ov_emission_costs(t,i,type) Costs for emission rights for pollutants and greenhouse gases (mio. USD17MER per yr) ov_emissions_reg(t,i,emis_source,pollutants,type) Regional emissions by source and gas after technical mitigation N CH4 C (Tg per yr) ov56_emis_pricing(t,i,emis_source,pollutants,type) Regional emissions by source and gas after technical mitigation N CH4 C (Tg per yr) - ov56_emission_cost(t,i,emis_source,type) GHG emissions cost (mio. USD05MER per yr) - ov_reward_cdr_aff(t,i,type) Regional average annual expected revenue from afforestation (mio. USD05MER per yr) - ov56_reward_cdr_aff(t,j,type) Cellular average annual expected revenue from afforestation (mio. USD05MER per yr) - oq56_emission_costs(t,i,type) Calculation of total emission costs (mio. USD05MER per yr) - oq56_emission_cost_annual(t,i,emis_annual,type) Calculation of regional costs for annual emissions (mio. USD05MER per yr) - oq56_emission_cost_oneoff(t,i,emis_oneoff,type) Calculation of regional costs for emissions occuring only once in time (mio. USD05MER per yr) - oq56_reward_cdr_aff_reg(t,i,type) Regional revenues for carbon captured by afforestation (mio. USD05MER per yr) - oq56_reward_cdr_aff(t,j,type) Cellular revenues for carbon captured by afforestation (mio. USD05MER per yr) + ov56_emission_cost(t,i,emis_source,type) GHG emissions cost (mio. USD17MER per yr) + ov_reward_cdr_aff(t,i,type) Regional average annual expected revenue from afforestation (mio. USD17MER per yr) + ov56_reward_cdr_aff(t,j,type) Cellular average annual expected revenue from afforestation (mio. USD17MER per yr) + oq56_emission_costs(t,i,type) Calculation of total emission costs (mio. USD17MER per yr) + oq56_emission_cost_annual(t,i,emis_annual,type) Calculation of regional costs for annual emissions (mio. USD17MER per yr) + oq56_emission_cost_oneoff(t,i,emis_oneoff,type) Calculation of regional costs for emissions occuring only once in time (mio. USD17MER per yr) + oq56_reward_cdr_aff_reg(t,i,type) Regional revenues for carbon captured by afforestation (mio. USD17MER per yr) + oq56_reward_cdr_aff(t,j,type) Cellular revenues for carbon captured by afforestation (mio. USD17MER per yr) oq56_emis_pricing(t,i,pollutants,emis_source,type) Calculation of annual CO2 emissions for pricing (Tg per yr) oq56_emis_pricing_co2(t,i,emis_oneoff,type) Calculation of annual CO2 emissions for pricing (Tg per yr) ; diff --git a/modules/56_ghg_policy/price_aug22/input.gms b/modules/56_ghg_policy/price_aug22/input.gms index 004c68d53a..fefaeaa640 100644 --- a/modules/56_ghg_policy/price_aug22/input.gms +++ b/modules/56_ghg_policy/price_aug22/input.gms @@ -67,9 +67,9 @@ pollutants_fader(pollutants) pollutants affected by GHG policy fader / co2_c, ch ; scalars - s56_limit_ch4_n2o_price Upper limit for CH4 and N2O GHG prices (USD05MER per tC) / 4000 / + s56_limit_ch4_n2o_price Upper limit for CH4 and N2O GHG prices (USD17MER per tC) / 4920 / s56_cprice_red_factor Reduction factor for CO2 price (-) / 1 / - s56_minimum_cprice Minium C price for future time steps (USD per tC) / 0 / + s56_minimum_cprice Minium C price for future time steps (USD17MER per tC) / 0 / s56_ghgprice_devstate_scaling Switch for scaling GHG price with development state (1=on 0=off) / 0 / s56_c_price_induced_aff Switch for C price driven re-afforestation (1=on 0=off) / 1 / s56_c_price_exp_aff Time horizon of CO2 price expectation for re-afforestation (years) / 50 / @@ -93,19 +93,19 @@ $setglobal c56_mute_ghgprices_until y2030 $setglobal c56_carbon_stock_pricing actualNoAcEst * options: actual, actualNoAcEst -table f56_pollutant_prices(t_all,i,pollutants,ghgscen56) GHG certificate prices for N2O-N CH4 CO2-C (USD05MER per t) +table f56_pollutant_prices(t_all,i,pollutants,ghgscen56) GHG certificate prices for N2O-N CH4 CO2-C (USD17MER per t) $ondelim $include "./modules/56_ghg_policy/input/f56_pollutant_prices.cs3" $offdelim ; -$if "%c56_pollutant_prices%" == "coupling" table f56_pollutant_prices_coupling(t_all,i,pollutants) Regional ghg certificate prices for N2O-N CH4 CO2-C (USD05MER per t) +$if "%c56_pollutant_prices%" == "coupling" table f56_pollutant_prices_coupling(t_all,i,pollutants) Regional ghg certificate prices for N2O-N CH4 CO2-C (USD17MER per t) $if "%c56_pollutant_prices%" == "coupling" $ondelim $if "%c56_pollutant_prices%" == "coupling" $include "./modules/56_ghg_policy/input/f56_pollutant_prices_coupling.cs3" $if "%c56_pollutant_prices%" == "coupling" $offdelim $if "%c56_pollutant_prices%" == "coupling" ; -$if "%c56_pollutant_prices%" == "emulator" table f56_pollutant_prices_emulator(t_all,i,pollutants) Global ghg certificate prices for N2O-N CH4 CO2-C (USD05MER per t) +$if "%c56_pollutant_prices%" == "emulator" table f56_pollutant_prices_emulator(t_all,i,pollutants) Global ghg certificate prices for N2O-N CH4 CO2-C (USD17MER per t) $if "%c56_pollutant_prices%" == "emulator" $ondelim $if "%c56_pollutant_prices%" == "emulator" $include "./modules/56_ghg_policy/input/f56_pollutant_prices_emulator.cs3" $if "%c56_pollutant_prices%" == "emulator" $offdelim diff --git a/modules/56_ghg_policy/price_aug22/preloop.gms b/modules/56_ghg_policy/price_aug22/preloop.gms index 9d0f6d8887..460c233115 100644 --- a/modules/56_ghg_policy/price_aug22/preloop.gms +++ b/modules/56_ghg_policy/price_aug22/preloop.gms @@ -54,9 +54,9 @@ im_pollutant_prices(t_all,i,pollutants,emis_source)$(m_year(t_all) > sm_fix_SSP2 im_pollutant_prices(t_all,i,"co2_c",emis_source)$(m_year(t_all) > sm_fix_SSP2 AND m_year(t_all) <= m_year("%c56_mute_ghgprices_until%")) = s56_minimum_cprice; ***limit CH4 and N2O GHG prices based on s56_limit_ch4_n2o_price -*12/44 conversion from USD per tC to USD per tCO2 -*28 and 265 Global Warming Potentials from AR5 WG1 CH08 Table 8.7, conversion from USD per tCO2 to USD per tCH4 and USD per tN2O -*44/28 conversion from USD per tN2O to USD per tN +*12/44 conversion from USD17MER per tC to USD17MER per tCO2 +*28 and 265 Global Warming Potentials from AR5 WG1 CH08 Table 8.7, conversion from USD17MER per tCO2 to USD17MER per tCH4 and USD17MER per tN2O +*44/28 conversion from USD17MER per tN2O to USD17MER per tN im_pollutant_prices(t_all,i,"ch4",emis_source)$(im_pollutant_prices(t_all,i,"ch4",emis_source) > s56_limit_ch4_n2o_price*12/44*28) = s56_limit_ch4_n2o_price*12/44*28; im_pollutant_prices(t_all,i,"n2o_n_direct",emis_source)$(im_pollutant_prices(t_all,i,"n2o_n_direct",emis_source) > s56_limit_ch4_n2o_price*12/44*265*44/28) = s56_limit_ch4_n2o_price*12/44*265*44/28; im_pollutant_prices(t_all,i,"n2o_n_indirect",emis_source)$(im_pollutant_prices(t_all,i,"n2o_n_indirect",emis_source) > s56_limit_ch4_n2o_price*12/44*265*44/28) = s56_limit_ch4_n2o_price*12/44*265*44/28; diff --git a/modules/57_maccs/on_aug22/declarations.gms b/modules/57_maccs/on_aug22/declarations.gms index b9db4d40c4..d36d57dc60 100644 --- a/modules/57_maccs/on_aug22/declarations.gms +++ b/modules/57_maccs/on_aug22/declarations.gms @@ -6,29 +6,29 @@ *** | Contact: magpie@pik-potsdam.de scalars - s57_step_length Step length in MACC data (yr) + s57_step_length Step length in MACC data (USD17MER) ; parameters im_maccs_mitigation(t,i,emis_source,pollutants) Technical mitigation of GHG emissions (percent) i57_mac_step_n2o(t,i,emis_source) Helper to map N2O prices and maccs_steps (1) i57_mac_step_ch4(t,i,emis_source) Helper to map CH4 prices and maccs_steps (1) - p57_maccs_costs_integral(t,i,emis_source,pollutants) Costs of technical mitigation (USD95MER per Tg N CH4 C) + p57_maccs_costs_integral(t,i,emis_source,pollutants) Costs of technical mitigation (USD17MER per Tg N CH4 C) ; equations - q57_labor_costs(i) Calculation of labor costs of technical mitigation (mio. USD95MER per yr) - q57_capital_costs(i) Calculation of capital costs of technical mitigation (mio. USD95MER per yr) + q57_labor_costs(i) Calculation of labor costs of technical mitigation (mio. USD17MER per yr) + q57_capital_costs(i) Calculation of capital costs of technical mitigation (mio. USD17MER per yr) ; positive variables - vm_maccs_costs(i,factors) Costs of technical mitigation of GHG emissions (mio. USD95MER per yr) + vm_maccs_costs(i,factors) Costs of technical mitigation of GHG emissions (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_maccs_costs(t,i,factors,type) Costs of technical mitigation of GHG emissions (mio. USD95MER per yr) - oq57_labor_costs(t,i,type) Calculation of labor costs of technical mitigation (mio. USD95MER per yr) - oq57_capital_costs(t,i,type) Calculation of capital costs of technical mitigation (mio. USD95MER per yr) + ov_maccs_costs(t,i,factors,type) Costs of technical mitigation of GHG emissions (mio. USD17MER per yr) + oq57_labor_costs(t,i,type) Calculation of labor costs of technical mitigation (mio. USD17MER per yr) + oq57_capital_costs(t,i,type) Calculation of capital costs of technical mitigation (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/57_maccs/on_aug22/input.gms b/modules/57_maccs/on_aug22/input.gms index aa6ed24d82..6c5987804e 100644 --- a/modules/57_maccs/on_aug22/input.gms +++ b/modules/57_maccs/on_aug22/input.gms @@ -17,7 +17,7 @@ scalars s57_maxmac_ch4_entferm activate enteric fermentation CH4 mitigation independent of pollutant price (step of MACC and -1 is inactive) / -1 / s57_maxmac_ch4_awms activate awms CH4 mitigation independent of pollutant price (step of MACC and -1 is inactive) / -1 / s57_implicit_emis_factor emission factor for direct soil emissions implicit to MACC curves (tN2ON per tN) / 0.01 / - s57_implicit_fert_cost fertilizer costs implicit to MACC curves (USD05MER per ton N) / 600 / + s57_implicit_fert_cost fertilizer costs implicit to MACC curves (USD17MER per ton N) / 738 / ; $onEmpty diff --git a/modules/57_maccs/on_aug22/preloop.gms b/modules/57_maccs/on_aug22/preloop.gms index 9dec38e391..0c89a1fc93 100644 --- a/modules/57_maccs/on_aug22/preloop.gms +++ b/modules/57_maccs/on_aug22/preloop.gms @@ -5,14 +5,17 @@ *** | MAgPIE License Exception, version 1.0 (see LICENSE file). *** | Contact: magpie@pik-potsdam.de -$if "%c57_macc_version%" == "PBL_2007" s57_step_length = 5; -$if "%c57_macc_version%" == "PBL_2019" s57_step_length = 20; -$if "%c57_macc_version%" == "PBL_2022" s57_step_length = 20; +* inflated using USD05 --> USD17 MER rate: 5 * 1.23 +$if "%c57_macc_version%" == "PBL_2007" s57_step_length = 6.15; +* inflated using USD10 --> USD17 MER rate: 20 * 1.12 +$if "%c57_macc_version%" == "PBL_2019" s57_step_length = 22.4; +* inflated using USD10 --> USD17 MER rate: 20 * 1.12 +$if "%c57_macc_version%" == "PBL_2022" s57_step_length = 22.4; $ontext Determine level of GHG emission abatement depending on GHG prices. -There are 201 abatement steps. Each step is 5 USD per tC eq in case of PBL_2007 and -20 USD per tC eq in case of PBL_2019. +There are 201 abatement steps. Each step is 6.15 USD17MER per tC eq in case of PBL_2007 and +22.4 USD17MER per tC eq in case of PBL_2019. Since the GHG prices are in USD per ton N and USD per ton CH4, conversion to USD per ton C eq is needed. In this realization, the IPCC AR4 global warming potential factor for N2O (298) and CH4 (25) are used because PBL used these parameters to convert USD per ton N2O and USD per ton CH4 into USD per ton C eq. diff --git a/modules/58_peatland/off/declarations.gms b/modules/58_peatland/off/declarations.gms index c39a5314fa..2983b10a78 100644 --- a/modules/58_peatland/off/declarations.gms +++ b/modules/58_peatland/off/declarations.gms @@ -6,13 +6,13 @@ *** | Contact: magpie@pik-potsdam.de positive variables - vm_peatland_cost(j) One-time and recurring cost of managed peatland (mio. USD05MER per yr) + vm_peatland_cost(j) One-time and recurring cost of managed peatland (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_peatland_cost(t,j,type) One-time and recurring cost of managed peatland (mio. USD05MER per yr) + ov_peatland_cost(t,j,type) One-time and recurring cost of managed peatland (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/58_peatland/v2/declarations.gms b/modules/58_peatland/v2/declarations.gms index a8b438f8b8..b7748cbff5 100644 --- a/modules/58_peatland/v2/declarations.gms +++ b/modules/58_peatland/v2/declarations.gms @@ -11,11 +11,11 @@ parameters p58_scalingFactorExp(t,j) Scaling factor for peatland expansion (1) p58_scalingFactorRed(t,j,manPeat58) Scaling factor for peatland reduction (1) p58_mapping_cell_climate(j,clcl58) Mapping between cells and climate regions (binary) - i58_cost_rewet_recur(t) Recurring costs for rewetted peatland (USD05MER per ha) - i58_cost_rewet_onetime(t) One-time costs for peatland rewetting (USD05MER per ha) - i58_cost_drain_recur(t) Recurring costs for drained and managed peatlands (USD05MER per ha) - i58_cost_drain_intact_onetime(t) One-time costs for drainage of intact peatland (USD05MER per ha) - i58_cost_drain_rewet_onetime(t) One-time costs for drainage of rewetted peatland (USD05MER per ha) + i58_cost_rewet_recur(t) Recurring costs for rewetted peatland (USD17MER per ha) + i58_cost_rewet_onetime(t) One-time costs for peatland rewetting (USD17MER per ha) + i58_cost_drain_recur(t) Recurring costs for drained and managed peatlands (USD17MER per ha) + i58_cost_drain_intact_onetime(t) One-time costs for drainage of intact peatland (USD17MER per ha) + i58_cost_drain_rewet_onetime(t) One-time costs for drainage of rewetted peatland (USD17MER per ha) p58_availPeatlandExp(t,j) Available area for expansion of drained peatland (mio. ha) p58_availLandExp(t,j) Available area for expansion of managed land (mio. ha) ; @@ -27,16 +27,16 @@ equations q58_manLandExp(j,manPeat58) Managed land area expansion (mio. ha) q58_manLandRed(j,manPeat58) Managed land area reduction (mio. ha) q58_peatlandMan(j,manPeat58) Change of managed peatland area (mio. ha) - q58_peatlandMan2(j,manPeat58) Contraint for managed peatland area (mio. ha) - q58_peatland_cost(j) One-time and recurring cost of peatland conversion and management (mio. USD05MER per yr) - q58_peatland_cost_annuity(j,cost58) Annuity costs for peatland conversion in the current timestep (mio. USD05MER per yr) + q58_peatlandMan2(j,manPeat58) Contraint for managed peatland area (mio. ha) + q58_peatland_cost(j) One-time and recurring cost of peatland conversion and management (mio. USD17MER per yr) + q58_peatland_cost_annuity(j,cost58) Annuity costs for peatland conversion in the current timestep (mio. USD17MER per yr) q58_peatland_emis_detail(j,land58,emis58) Detailed GHG emissions from peatlands (Tg per yr) q58_peatland_emis(i,poll58) GHG emissions from managed peatland (Tg per yr) ; variables v58_peatlandChange(j,land58) Peatland area change (mio. ha) - vm_peatland_cost(j) One-time and recurring cost of peatland conversion and management (mio. USD05MER per yr) + vm_peatland_cost(j) One-time and recurring cost of peatland conversion and management (mio. USD17MER per yr) v58_peatland_emis(j,land58,emis58) Detailed GHG peatland GHG emissions (Tg per yr) ; @@ -47,13 +47,13 @@ positive variables v58_manLandRed(j,manPeat58) Managed land area reduction (mio. ha) v58_balance(j,manPeat58) Technical balance term for peatland scaling factor (1) v58_balance2(j,manPeat58) Technical balance term for peatland scaling factor (1) - v58_peatland_cost_annuity(j,cost58) Annuity costs for peatland conversion in the current timestep (mio. USD05MER per yr) + v58_peatland_cost_annuity(j,cost58) Annuity costs for peatland conversion in the current timestep (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov58_peatlandChange(t,j,land58,type) Peatland area change (mio. ha) - ov_peatland_cost(t,j,type) One-time and recurring cost of peatland conversion and management (mio. USD05MER per yr) + ov_peatland_cost(t,j,type) One-time and recurring cost of peatland conversion and management (mio. USD17MER per yr) ov58_peatland_emis(t,j,land58,emis58,type) Detailed GHG peatland GHG emissions (Tg per yr) ov58_peatland(t,j,land58,type) Peatland area (mio. ha) ov58_manLand(t,j,manPeat58,type) Managed land area (mio. ha) @@ -61,7 +61,7 @@ parameters ov58_manLandRed(t,j,manPeat58,type) Managed land area reduction (mio. ha) ov58_balance(t,j,manPeat58,type) Technical balance term for peatland scaling factor (1) ov58_balance2(t,j,manPeat58,type) Technical balance term for peatland scaling factor (1) - ov58_peatland_cost_annuity(t,j,cost58,type) Annuity costs for peatland conversion in the current timestep (mio. USD05MER per yr) + ov58_peatland_cost_annuity(t,j,cost58,type) Annuity costs for peatland conversion in the current timestep (mio. USD17MER per yr) oq58_peatland(t,j,type) Constraint for total peatland area (mio. ha) oq58_peatlandChange(t,j,land58,type) Peatland area change (mio. ha) oq58_manLand(t,j,manPeat58,type) Managed land area (mio. ha) @@ -69,8 +69,8 @@ parameters oq58_manLandRed(t,j,manPeat58,type) Managed land area reduction (mio. ha) oq58_peatlandMan(t,j,manPeat58,type) Change of managed peatland area (mio. ha) oq58_peatlandMan2(t,j,manPeat58,type) Contraint for managed peatland area (mio. ha) - oq58_peatland_cost(t,j,type) One-time and recurring cost of peatland conversion and management (mio. USD05MER per yr) - oq58_peatland_cost_annuity(t,j,cost58,type) Annuity costs for peatland conversion in the current timestep (mio. USD05MER per yr) + oq58_peatland_cost(t,j,type) One-time and recurring cost of peatland conversion and management (mio. USD17MER per yr) + oq58_peatland_cost_annuity(t,j,cost58,type) Annuity costs for peatland conversion in the current timestep (mio. USD17MER per yr) oq58_peatland_emis_detail(t,j,land58,emis58,type) Detailed GHG emissions from peatlands (Tg per yr) oq58_peatland_emis(t,i,poll58,type) GHG emissions from managed peatland (Tg per yr) ; diff --git a/modules/58_peatland/v2/input.gms b/modules/58_peatland/v2/input.gms index afa2b3face..20e91e2c16 100644 --- a/modules/58_peatland/v2/input.gms +++ b/modules/58_peatland/v2/input.gms @@ -6,14 +6,14 @@ *** | Contact: magpie@pik-potsdam.de scalars - s58_cost_rewet_recur Recurring costs for rewetted peatland (USD05MER per ha) / 30 / - s58_cost_rewet_onetime One-time costs for peatland rewetting (USD05MER per ha) / 1000 / - s58_cost_drain_recur Recurring costs for drained and managed peatlands (USD05MER per ha) / 0 / - s58_cost_drain_intact_onetime One-time costs for drainage of intact peatland (USD05MER per ha) / 0 / - s58_cost_drain_rewet_onetime One-time costs for drainage of rewetted peatland (USD05MER per ha) / 1000 / + s58_cost_rewet_recur Recurring costs for rewetted peatland (USD17MER per ha) / 37 / + s58_cost_rewet_onetime One-time costs for peatland rewetting (USD17MER per ha) / 1230 / + s58_cost_drain_recur Recurring costs for drained and managed peatlands (USD17MER per ha) / 0 / + s58_cost_drain_intact_onetime One-time costs for drainage of intact peatland (USD17MER per ha) / 0 / + s58_cost_drain_rewet_onetime One-time costs for drainage of rewetted peatland (USD17MER per ha) / 0 / s58_rewetting_switch Peatland rewetting on (Inf) or off (0) / Inf / s58_fix_peatland Year indicating until when peatland area should be fixed (year) / 2020 / - s58_balance_penalty Penalty for technical peatland balance term (USD05MER) / 1e+06 / + s58_balance_penalty Penalty for technical peatland balance term (USD17MER) / 1e+06 / ; *Peatland area based on Global Peatland Map 2.0 and Global Peatland Database diff --git a/modules/58_peatland/v2/scaling.gms b/modules/58_peatland/v2/scaling.gms index 787936e8ca..a0f1cec7b8 100644 --- a/modules/58_peatland/v2/scaling.gms +++ b/modules/58_peatland/v2/scaling.gms @@ -5,5 +5,5 @@ *** | MAgPIE License Exception, version 1.0 (see LICENSE file). *** | Contact: magpie@pik-potsdam.de -v58_peatlandChange.scale(j,land58) = 10e-3; -v58_peatland.scale(j,land58) = 10e-3; +v58_balance.scale(j,manPeat58) = 10e-5; +v58_balance2.scale(j,manPeat58) = 10e-5; diff --git a/modules/60_bioenergy/1st2ndgen_priced_feb24/declarations.gms b/modules/60_bioenergy/1st2ndgen_priced_feb24/declarations.gms index d0bfaffac5..d3efbe17da 100644 --- a/modules/60_bioenergy/1st2ndgen_priced_feb24/declarations.gms +++ b/modules/60_bioenergy/1st2ndgen_priced_feb24/declarations.gms @@ -10,9 +10,9 @@ parameters i60_bioenergy_dem(t,i) Regional bioenergy demand per year (mio. GJ per yr) i60_res_2ndgenBE_dem(t,i) Regional residue demand for 2nd generation bioenergy per year (mio. GJ per yr) i60_1stgen_bioenergy_dem(t,i,kall) Regional 1st generation bioenergy demand (mio. GJ per yr) - i60_1stgen_bioenergy_subsidy_tdm(t) Global 1st generation bioenergy subsidy per tDM (USD05MER per tDM) - i60_1stgen_bioenergy_subsidy_gj(t) Global 1st generation bioenergy subsidy per GJ (USD05MER per GJ) - i60_2ndgen_bioenergy_subsidy(t) Global 2nd generation bioenergy subsidy (USD05MER per GHJ) + i60_1stgen_bioenergy_subsidy_tdm(t) Global 1st generation bioenergy subsidy per tDM (USD17MER per tDM) + i60_1stgen_bioenergy_subsidy_gj(t) Global 1st generation bioenergy subsidy per GJ (USD17MER per GJ) + i60_2ndgen_bioenergy_subsidy(t) Global 2nd generation bioenergy subsidy (USD17MER per GHJ) p60_region_BE_shr(t_all,i) Bioenergy demand share of the region (1) p60_country_dummy(iso) Dummy parameter indicating whether country is selected for selected bioenergy demand scenario (1) ; @@ -24,7 +24,7 @@ positive variables ; variables - vm_bioenergy_utility(i) Utility as negative costs for producing bioenergy (USD05MER per yr) + vm_bioenergy_utility(i) Utility as negative costs for producing bioenergy (USD17MER per yr) ; equations @@ -32,7 +32,7 @@ equations q60_bioenergy_glo Global 2nd generation dedicated bioenergy demand (mio. GJ per yr) q60_bioenergy_reg(i) Regional 2nd generation dedicated bioenergy demand (mio. GJ per yr) q60_res_2ndgenBE(i) Regional residue demand for 2nd generation bioenergy (mio. GJ per yr) - q60_bioenergy_incentive(i) Incentive to produce bioenergy (mio. USD05MER per yr) + q60_bioenergy_incentive(i) Incentive to produce bioenergy (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### @@ -40,11 +40,11 @@ parameters ov_dem_bioen(t,i,kall,type) Regional bioenergy demand (mio. tDM per yr) ov60_2ndgen_bioenergy_dem_dedicated(t,i,kall,type) Bioenergy demand which can come from different regions (mio. GJ per yr) ov60_2ndgen_bioenergy_dem_residues(t,i,kall,type) Bioenergy demand which can come from different product types (mio. GJ per yr) - ov_bioenergy_utility(t,i,type) Utility as negative costs for producing bioenergy (USD05MER per yr) + ov_bioenergy_utility(t,i,type) Utility as negative costs for producing bioenergy (USD17MER per yr) oq60_bioenergy(t,i,kall,type) Global total bioenergy demand (mio. GJ per yr) oq60_bioenergy_glo(t,type) Global 2nd generation dedicated bioenergy demand (mio. GJ per yr) oq60_bioenergy_reg(t,i,type) Regional 2nd generation dedicated bioenergy demand (mio. GJ per yr) oq60_res_2ndgenBE(t,i,type) Regional residue demand for 2nd generation bioenergy (mio. GJ per yr) - oq60_bioenergy_incentive(t,i,type) Incentive to produce bioenergy (mio. USD05MER per yr) + oq60_bioenergy_incentive(t,i,type) Incentive to produce bioenergy (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/60_bioenergy/1st2ndgen_priced_feb24/input.gms b/modules/60_bioenergy/1st2ndgen_priced_feb24/input.gms index da938046e9..d368538417 100644 --- a/modules/60_bioenergy/1st2ndgen_priced_feb24/input.gms +++ b/modules/60_bioenergy/1st2ndgen_priced_feb24/input.gms @@ -35,10 +35,10 @@ sets scalars c60_biodem_level bioenergy demand level indicator 1 for regional and 0 for global demand (1) / 1 / - c60_bioenergy_subsidy_fix_SSP2 first generation bioenergy subsidy during fix_SSP period (USD05MER per ton) / 300 / - c60_bioenergy_subsidy first generation bioenergy subsidy (USD05MER per ton) / 300 / - s60_bioenergy_gj_price_1st first generation bioenergy per-GJ price (USD05MER per GJ) / 0 / - s60_bioenergy_price_2nd second generation bioenergy price (USD05MER per GJ) / 0 / + c60_bioenergy_subsidy_fix_SSP2 first generation bioenergy subsidy during fix_SSP period (USD17MER per ton) / 369 / + c60_bioenergy_subsidy first generation bioenergy subsidy (USD17MER per ton) / 369 / + s60_bioenergy_gj_price_1st first generation bioenergy per-GJ price (USD17MER per GJ) / 0 / + s60_bioenergy_price_2nd second generation bioenergy price (USD17MER per GJ) / 0 / s60_2ndgen_bioenergy_dem_min Minimum dedicated 2nd generation bioenergy demand assumed in each region during SSP2-fix (mio. GJ per yr) / 1 / s60_2ndgen_bioenergy_dem_min_post_fix Minimum dedicated 2nd generation bioenergy demand assumed in each region after SSP2-fix (mio. GJ per yr) / 1 / ; diff --git a/modules/60_bioenergy/1stgen_priced_dec18/declarations.gms b/modules/60_bioenergy/1stgen_priced_dec18/declarations.gms index 9eb2009b59..9894f55c98 100644 --- a/modules/60_bioenergy/1stgen_priced_dec18/declarations.gms +++ b/modules/60_bioenergy/1stgen_priced_dec18/declarations.gms @@ -21,7 +21,7 @@ positive variables ; variables - vm_bioenergy_utility(i) Utility as negative costs for producing bioenergy (USD05MER per yr) + vm_bioenergy_utility(i) Utility as negative costs for producing bioenergy (USD17MER per yr) ; equations @@ -29,7 +29,7 @@ equations q60_bioenergy_glo Global 2nd generation dedicated bioenergy demand (mio. GJ per yr) q60_bioenergy_reg(i) Regional 2nd generation dedicated bioenergy demand (mio. GJ per yr) q60_res_2ndgenBE(i) Regional residue demand for 2nd generation bioenergy (mio. GJ per yr) - q60_bioenergy_incentive(i) Incentive to produce bioenergy (mio. USD05MER per yr) + q60_bioenergy_incentive(i) Incentive to produce bioenergy (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### @@ -37,11 +37,11 @@ parameters ov_dem_bioen(t,i,kall,type) Regional bioenergy demand (mio. tDM per yr) ov60_2ndgen_bioenergy_dem_dedicated(t,i,kall,type) Bioenergy demand which can come from different regions (mio. GJ per yr) ov60_2ndgen_bioenergy_dem_residues(t,i,kall,type) Bioenergy demand which can come from different product types (mio. GJ per yr) - ov_bioenergy_utility(t,i,type) Utility as negative costs for producing bioenergy (USD05MER per yr) + ov_bioenergy_utility(t,i,type) Utility as negative costs for producing bioenergy (USD17MER per yr) oq60_bioenergy(t,i,kall,type) Global total bioenergy demand (mio. GJ per yr) oq60_bioenergy_glo(t,type) Global 2nd generation dedicated bioenergy demand (mio. GJ per yr) oq60_bioenergy_reg(t,i,type) Regional 2nd generation dedicated bioenergy demand (mio. GJ per yr) oq60_res_2ndgenBE(t,i,type) Regional residue demand for 2nd generation bioenergy (mio. GJ per yr) - oq60_bioenergy_incentive(t,i,type) Incentive to produce bioenergy (mio. USD05MER per yr) + oq60_bioenergy_incentive(t,i,type) Incentive to produce bioenergy (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/60_bioenergy/1stgen_priced_dec18/input.gms b/modules/60_bioenergy/1stgen_priced_dec18/input.gms index 5e43819c25..3ce1668a2c 100644 --- a/modules/60_bioenergy/1stgen_priced_dec18/input.gms +++ b/modules/60_bioenergy/1stgen_priced_dec18/input.gms @@ -35,7 +35,7 @@ sets scalars c60_biodem_level bioenergy demand level indicator 1 for regional and 0 for global demand (1) / 1 / - c60_bioenergy_subsidy first generation bioenergy subsidy (USD05MER per ton) / 300 / + c60_bioenergy_subsidy first generation bioenergy subsidy (USD17MER per ton) / 369 / s60_2ndgen_bioenergy_dem_min Minimum dedicated 2nd generation bioenergy demand assumed in each region (mio. GJ per yr) / 1 / ; diff --git a/modules/70_livestock/fbask_jan16/declarations.gms b/modules/70_livestock/fbask_jan16/declarations.gms index c824516eb4..2641126d57 100644 --- a/modules/70_livestock/fbask_jan16/declarations.gms +++ b/modules/70_livestock/fbask_jan16/declarations.gms @@ -8,8 +8,8 @@ positive variables vm_dem_feed(i,kap,kall) Regional feed demand including byproducts (mio. tDM per yr) - vm_cost_prod_livst(i,factors) Livestock factor costs (mio. USD05MER per yr) - vm_cost_prod_fish(i) Fish factor costs (mio. USD05MER per yr) + vm_cost_prod_livst(i,factors) Livestock factor costs (mio. USD17MER per yr) + vm_cost_prod_fish(i) Fish factor costs (mio. USD17MER per yr) ; equations @@ -35,7 +35,7 @@ parameters p70_cost_share_livst(t,i,factors) Capital and labor shares of the regional factor costs for plant production for livestock (1) p70_cost_share_calibration(i) Summation factor used to calibrate calculated capital shares with historical values (1) i70_cost_regr(i,kap,cost_regr) Regression coefficients for livestock factor requirements (1) - i70_fac_req_livst(t_all,i,kli) Factor requirements (USD05MER per tDM) + i70_fac_req_livst(t_all,i,kli) Factor requirements (USD17MER per tDM) p70_cereal_subst_fader(t_all) Cereal feed substitution with SCP fader (1) p70_foddr_subst_fader(t_all) Foddr substitution with SCP fader (1) ; @@ -44,8 +44,8 @@ parameters *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_dem_feed(t,i,kap,kall,type) Regional feed demand including byproducts (mio. tDM per yr) - ov_cost_prod_livst(t,i,factors,type) Livestock factor costs (mio. USD05MER per yr) - ov_cost_prod_fish(t,i,type) Fish factor costs (mio. USD05MER per yr) + ov_cost_prod_livst(t,i,factors,type) Livestock factor costs (mio. USD17MER per yr) + ov_cost_prod_fish(t,i,type) Fish factor costs (mio. USD17MER per yr) oq70_feed(t,i,kap,kall,type) Regional feed demand oq70_cost_prod_liv_labor(t,i,type) Regional labor costs for livestock production oq70_cost_prod_liv_capital(t,i,type) Regional capital costs for livestock production diff --git a/modules/70_livestock/fbask_jan16/input.gms b/modules/70_livestock/fbask_jan16/input.gms index a3acdbac2f..8156155b8a 100644 --- a/modules/70_livestock/fbask_jan16/input.gms +++ b/modules/70_livestock/fbask_jan16/input.gms @@ -46,7 +46,7 @@ $ondelim $include "./modules/70_livestock/fbask_jan16/input/f70_livestock_productivity.cs3" $offdelim; -table f70_cost_regr(kap,cost_regr) Factor requirements livestock (USD04 per tDM (A) and USD (B)) +table f70_cost_regr(kap,cost_regr) Factor requirements livestock (USD17MER per tDM (A) and USD17MER (B)) $ondelim $include "./modules/70_livestock/fbask_jan16/input/f70_capit_liv_regr.csv" $offdelim @@ -81,7 +81,7 @@ $include "./modules/70_livestock/fbask_jan16/input/f70_hist_cap_share.csv" $offdelim ; -table f70_hist_factor_costs_livst(t_all,i,kli) Historical factor costs in livestock production (mio. USD05MER) +table f70_hist_factor_costs_livst(t_all,i,kli) Historical factor costs in livestock production (mio. USD17MER) $ondelim $include "./modules/70_livestock/fbask_jan16/input/f70_hist_factor_costs_livst.cs3" $offdelim diff --git a/modules/70_livestock/fbask_jan16/presolve.gms b/modules/70_livestock/fbask_jan16/presolve.gms index ad6b37a10a..5d1dda4fee 100644 --- a/modules/70_livestock/fbask_jan16/presolve.gms +++ b/modules/70_livestock/fbask_jan16/presolve.gms @@ -55,14 +55,14 @@ else *' @stop -p70_cost_share_calibration(i) = f70_hist_cap_share("y2010",i)-(f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f70_cap_share_reg("intercept")); +p70_cost_share_calibration(i) = f70_hist_cap_share("y2010",i)-(f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f70_cap_share_reg("intercept")); if (m_year(t)<2010, p70_cost_share_livst(t,i,"capital") = f70_hist_cap_share(t,i); p70_cost_share_livst(t,i,"labor") = 1 - f70_hist_cap_share(t,i); elseif (m_year(t)>=2010), - p70_cost_share_livst(t,i,"capital") = f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f70_cap_share_reg("intercept")+p70_cost_share_calibration(i); + p70_cost_share_livst(t,i,"capital") = f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f70_cap_share_reg("intercept")+p70_cost_share_calibration(i); p70_cost_share_livst(t,i,"labor") = 1 - p70_cost_share_livst(t,i,"capital"); ); diff --git a/modules/70_livestock/fbask_jan16_sticky/declarations.gms b/modules/70_livestock/fbask_jan16_sticky/declarations.gms index 87bfd6c37e..0ea7887eea 100644 --- a/modules/70_livestock/fbask_jan16_sticky/declarations.gms +++ b/modules/70_livestock/fbask_jan16_sticky/declarations.gms @@ -8,9 +8,9 @@ positive variables vm_dem_feed(i,kap,kall) Regional feed demand including byproducts (mio. tDM per yr) - vm_cost_prod_livst(i,factors) Livestock factor costs (mio. USD05MER per yr) - vm_cost_prod_fish(i) Fish factor costs (mio. USD05MER per yr) - v70_investment(i,kli) Investment in immobile farm capital (mio USD05MER per yr) + vm_cost_prod_livst(i,factors) Livestock factor costs (mio. USD17MER per yr) + vm_cost_prod_fish(i) Fish factor costs (mio. USD17MER per yr) + v70_investment(i,kli) Investment in immobile farm capital (mio USD17MER per yr) ; equations @@ -37,11 +37,11 @@ parameters p70_cost_share_livst(t,i,factors) Capital and labor shares of the regional factor costs for plant production for livestock (1) p70_cost_share_calibration(i) Summation factor used to calibrate calculated capital shares with historical values (1) i70_cost_regr(i,kap,cost_regr) Regression coefficients for livestock factor requirements (1) - i70_fac_req_livst(t_all,i,kli) Factor requirements (USD05MER per tDM) + i70_fac_req_livst(t_all,i,kli) Factor requirements (USD17MER per tDM) p70_cereal_subst_fader(t_all) Cereal feed substitution with SCP fader (1) p70_foddr_subst_fader(t_all) Foddr substitution with SCP fader (1) - p70_capital_need(t,i,kli) Capital requirements per unit of output (USD05MER per ton DM) - p70_capital(t,i,kli) Preexisting immobile capital stocks before investment (mio USD05MER) + p70_capital_need(t,i,kli) Capital requirements per unit of output (USD17MER per ton DM) + p70_capital(t,i,kli) Preexisting immobile capital stocks before investment (mio USD17MER) p70_initial_1995_prod(i,kli) Initial regional production of livestock products taken from 1995 (mio ton DM) ; @@ -49,9 +49,9 @@ parameters *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov_dem_feed(t,i,kap,kall,type) Regional feed demand including byproducts (mio. tDM per yr) - ov_cost_prod_livst(t,i,factors,type) Livestock factor costs (mio. USD05MER per yr) - ov_cost_prod_fish(t,i,type) Fish factor costs (mio. USD05MER per yr) - ov70_investment(t,i,kli,type) Investment in immobile farm capital (mio USD05MER per yr) + ov_cost_prod_livst(t,i,factors,type) Livestock factor costs (mio. USD17MER per yr) + ov_cost_prod_fish(t,i,type) Fish factor costs (mio. USD17MER per yr) + ov70_investment(t,i,kli,type) Investment in immobile farm capital (mio USD17MER per yr) oq70_feed(t,i,kap,kall,type) Regional feed demand oq70_cost_prod_liv_labor(t,i,type) Regional labor costs for livestock production oq70_cost_prod_liv_capital(t,i,type) Regional investment costs in farm capital diff --git a/modules/70_livestock/fbask_jan16_sticky/input.gms b/modules/70_livestock/fbask_jan16_sticky/input.gms index 9981c2e4bb..dd728cd7ad 100644 --- a/modules/70_livestock/fbask_jan16_sticky/input.gms +++ b/modules/70_livestock/fbask_jan16_sticky/input.gms @@ -48,7 +48,7 @@ $ondelim $include "./modules/70_livestock/fbask_jan16_sticky/input/f70_livestock_productivity.cs3" $offdelim; -table f70_cost_regr(kap,cost_regr) Factor requirements livestock (USD04 per tDM (A) and USD (B)) +table f70_cost_regr(kap,cost_regr) Factor requirements livestock (USD17MER per tDM (A) and USD17MER (B)) $ondelim $include "./modules/70_livestock/fbask_jan16_sticky/input/f70_capit_liv_regr.csv" $offdelim @@ -83,7 +83,7 @@ $include "./modules/70_livestock/fbask_jan16_sticky/input/f70_hist_cap_share.csv $offdelim ; -table f70_hist_factor_costs_livst(t_all,i,kli) Historical factor costs in livestock production (mio. USD05MER) +table f70_hist_factor_costs_livst(t_all,i,kli) Historical factor costs in livestock production (mio. USD17MER) $ondelim $include "./modules/70_livestock/fbask_jan16_sticky/input/f70_hist_factor_costs_livst.cs3" $offdelim diff --git a/modules/70_livestock/fbask_jan16_sticky/presolve.gms b/modules/70_livestock/fbask_jan16_sticky/presolve.gms index 528f02b6f4..b0f81f8b02 100644 --- a/modules/70_livestock/fbask_jan16_sticky/presolve.gms +++ b/modules/70_livestock/fbask_jan16_sticky/presolve.gms @@ -55,14 +55,14 @@ else *' @stop -p70_cost_share_calibration(i) = f70_hist_cap_share("y2010",i)-(f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso("y2010",iso)))+f70_cap_share_reg("intercept")); +p70_cost_share_calibration(i) = f70_hist_cap_share("y2010",i)-(f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso("y2010",iso) * fm_gdp_defl_ppp(iso))))+f70_cap_share_reg("intercept")); if (m_year(t)<2010, p70_cost_share_livst(t,i,"capital") = f70_hist_cap_share(t,i); p70_cost_share_livst(t,i,"labor") = 1 - f70_hist_cap_share(t,i); elseif (m_year(t)>=2010), - p70_cost_share_livst(t,i,"capital") = f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),im_gdp_pc_ppp_iso(t,iso)))+f70_cap_share_reg("intercept")+p70_cost_share_calibration(i); + p70_cost_share_livst(t,i,"capital") = f70_cap_share_reg("slope")*log10(sum(i_to_iso(i,iso),(im_gdp_pc_ppp_iso(t,iso) * fm_gdp_defl_ppp(iso))))+f70_cap_share_reg("intercept")+p70_cost_share_calibration(i); p70_cost_share_livst(t,i,"labor") = 1 - p70_cost_share_livst(t,i,"capital"); ); diff --git a/modules/71_disagg_lvst/foragebased_aug18/declarations.gms b/modules/71_disagg_lvst/foragebased_aug18/declarations.gms index 7b9b964599..2a56b7fc4d 100644 --- a/modules/71_disagg_lvst/foragebased_aug18/declarations.gms +++ b/modules/71_disagg_lvst/foragebased_aug18/declarations.gms @@ -8,7 +8,7 @@ positive variables v71_prod_rum(j,kli_rum,kforage) Production of forage fed ruminants within a cell (mio. tDM per yr) v71_additional_mon(j, kli_mon) Additional punished production of monogastric livestock (mio. tDM per yr) - vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ; variables @@ -20,7 +20,7 @@ equations q71_balanceflow_constraint(j,kli_rum,kforage) Nonlinear balanceflow constraint for cellular forage feed products (mio. tDM per yr) q71_sum_rum_liv(j,kli_rum) Total production of forage fed ruminants (mio. tDM per yr) q71_prod_mon_liv(j,kli_mon) Production constraint for monogastric livestock products (mio. tDM per yr) - q71_punishment_mon(i) Punishment for additional monogastrics (mio. USD05MER per yr) + q71_punishment_mon(i) Punishment for additional monogastrics (mio. USD17MER per yr) ; parameters @@ -29,19 +29,19 @@ parameters scalars s71_scale_mon Scalar for flexible distribution of monogastrics (1) - s71_punish_additional_mon Scaling factor for transport punishment (USD05MER per tDM) + s71_punish_additional_mon Scaling factor for transport punishment (USD17MER per tDM) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov71_prod_rum(t,j,kli_rum,kforage,type) Production of forage fed ruminants within a cell (mio. tDM per yr) ov71_additional_mon(t,j,kli_mon,type) Additional punished production of monogastric livestock (mio. tDM per yr) - ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ov71_feed_balanceflow_share(t,j,kli_rum,kforage,type) Cellular feed balanceflow multiplier for forage feed for ruminant livestock (1) oq71_feed_rum_liv(t,j,kforage,type) Production constraint for ruminant livestock products (mio. tDM per yr) oq71_balanceflow_constraint(t,j,kli_rum,kforage,type) Nonlinear balanceflow constraint for cellular forage feed products (mio. tDM per yr) oq71_sum_rum_liv(t,j,kli_rum,type) Total production of forage fed ruminants (mio. tDM per yr) oq71_prod_mon_liv(t,j,kli_mon,type) Production constraint for monogastric livestock products (mio. tDM per yr) - oq71_punishment_mon(t,i,type) Punishment for additional monogastrics (mio. USD05MER per yr) + oq71_punishment_mon(t,i,type) Punishment for additional monogastrics (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/71_disagg_lvst/foragebased_jul23/declarations.gms b/modules/71_disagg_lvst/foragebased_jul23/declarations.gms index e49d436e04..0144c4973e 100644 --- a/modules/71_disagg_lvst/foragebased_jul23/declarations.gms +++ b/modules/71_disagg_lvst/foragebased_jul23/declarations.gms @@ -8,7 +8,7 @@ positive variables v71_feed_forage(j, kforage) Production of forage within a cell (mio. tDM per yr) v71_additional_mon(j, kli_mon) Additional punished production of monogastric livestock (mio. tDM per yr) - vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ; variables @@ -21,7 +21,7 @@ equations q71_feed_balanceflow_nlp(j) Non-linear balanceflow constraint for forage feed products (mio. tDM per yr) q71_feed_balanceflow_lp(i) Linear balanceflow constraint for forage feed products (mio. tDM per yr) q71_prod_mon_liv(j,kli_mon) Production constraint for monogastric livestock products (mio. tDM per yr) - q71_punishment_mon(i) Punishment for additional monogastrics (mio. USD05MER per yr) + q71_punishment_mon(i) Punishment for additional monogastrics (mio. USD17MER per yr) ; parameters @@ -31,20 +31,20 @@ parameters scalars s71_lp_fix Switch to fix equations to linear relation (Logical) s71_scale_mon Scalar for flexible distribution of monogastrics (1) - s71_punish_additional_mon Scaling factor for transport punishment (USD05MER per tDM) + s71_punish_additional_mon Scaling factor for transport punishment (USD17MER per tDM) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters ov71_feed_forage(t,j,kforage,type) Production of forage within a cell (mio. tDM per yr) ov71_additional_mon(t,j,kli_mon,type) Additional punished production of monogastric livestock (mio. tDM per yr) - ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ov71_feed_balanceflow(t,j,kforage,type) Cellular feed balanceflow for forage feed for ruminant livestock (mio. tDM per yr) oq71_feed_rum_liv(t,j,kforage,type) Production constraint for ruminant livestock products (mio. tDM per yr) oq71_feed_forage(t,j,type) Forage feed constraint (mio. tDM per yr) oq71_feed_balanceflow_nlp(t,j,type) Non-linear balanceflow constraint for forage feed products (mio. tDM per yr) oq71_feed_balanceflow_lp(t,i,type) Linear balanceflow constraint for forage feed products (mio. tDM per yr) oq71_prod_mon_liv(t,j,kli_mon,type) Production constraint for monogastric livestock products (mio. tDM per yr) - oq71_punishment_mon(t,i,type) Punishment for additional monogastrics (mio. USD05MER per yr) + oq71_punishment_mon(t,i,type) Punishment for additional monogastrics (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/71_disagg_lvst/off/declarations.gms b/modules/71_disagg_lvst/off/declarations.gms index a239efbfba..85cd6bce1c 100644 --- a/modules/71_disagg_lvst/off/declarations.gms +++ b/modules/71_disagg_lvst/off/declarations.gms @@ -6,10 +6,10 @@ *** | Contact: magpie@pik-potsdam.de positive variables - vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + vm_costs_additional_mon(i) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ; *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD05MER per yr) + ov_costs_additional_mon(t,i,type) Punishment cost for additionally transported monogastric livst_egg (mio. USD17MER per yr) ; *##################### R SECTION END (OUTPUT DECLARATIONS) ##################### diff --git a/modules/73_timber/default/declarations.gms b/modules/73_timber/default/declarations.gms index 67ced42c84..6f18cf0548 100644 --- a/modules/73_timber/default/declarations.gms +++ b/modules/73_timber/default/declarations.gms @@ -15,17 +15,17 @@ p73_demand_modifier(t_all) Simp p73_fraction(t_all) Fraction over which construction wood demand is spread out (1) p73_demand_constr_wood(t_all,i) Demand for construction wood (mio. tDM per yr) p73_fraction_sm_fix Modifier fraction at sm_fix_SSP2 time step (1) -im_timber_prod_cost(kforestry) Cost for producing one unit of wood and woodfuel (USD per tDM) +im_timber_prod_cost(kforestry) Cost for producing one unit of wood and woodfuel (USD17MER per tDM) ; positive variables -vm_cost_timber(i) Actual cost of harvesting timber from forests (mio. USD per yr) +vm_cost_timber(i) Actual cost of harvesting timber from forests (mio. USD17MER per yr) v73_prod_heaven_timber(j,kforestry) Production of woody biomass from heaven (mio. tDM per yr) v73_prod_residues(j) Production of residues from industrial roundwood harvest (mio. tDM per yr) ; equations -q73_cost_timber(i) Actual cost of harvesting timber from forests (mio. USD per yr) +q73_cost_timber(i) Actual cost of harvesting timber from forests (mio. USD17MER per yr) q73_prod_wood(j) Production of industrial roundwood (mio. tDM per yr) q73_prod_woodfuel(j) Production of wood fuel (mio. tDM per yr) q73_prod_residues(j) Production of residues from industrial roundwood harvest (mio. tDM per yr) @@ -34,10 +34,10 @@ q73_prod_residues(j) Prod *#################### R SECTION START (OUTPUT DECLARATIONS) #################### parameters - ov_cost_timber(t,i,type) Actual cost of harvesting timber from forests (mio. USD per yr) + ov_cost_timber(t,i,type) Actual cost of harvesting timber from forests (mio. USD17MER per yr) ov73_prod_heaven_timber(t,j,kforestry,type) Production of woody biomass from heaven (mio. tDM per yr) ov73_prod_residues(t,j,type) Production of residues from industrial roundwood harvest (mio. tDM per yr) - oq73_cost_timber(t,i,type) Actual cost of harvesting timber from forests (mio. USD per yr) + oq73_cost_timber(t,i,type) Actual cost of harvesting timber from forests (mio. USD17MER per yr) oq73_prod_wood(t,j,type) Production of industrial roundwood (mio. tDM per yr) oq73_prod_woodfuel(t,j,type) Production of wood fuel (mio. tDM per yr) oq73_prod_residues(t,j,type) Production of residues from industrial roundwood harvest (mio. tDM per yr) diff --git a/modules/73_timber/default/input.gms b/modules/73_timber/default/input.gms index 91d789b5a2..2e2f7d9356 100644 --- a/modules/73_timber/default/input.gms +++ b/modules/73_timber/default/input.gms @@ -15,13 +15,14 @@ scalars * 60 EUR/m3 = 72 USD/m3 * 72 USD/m3 / 0.6 = 120 USD/tDM * https://unece.org/forests/prices - s73_timber_prod_cost_wood Cost for producing one unit of wood (USD per tDM) / 120 / - s73_timber_prod_cost_woodfuel Cost for prodcing one unit of woodfuel (USD per tDM) / 60 / - s73_free_prod_cost Very high cost for settling demand without production (USD per tDM) / 20000 / +* inflated using USD05 --> USD17 rate of 1.23 + s73_timber_prod_cost_wood Cost for producing one unit of wood (USD17MER per tDM) / 148 / + s73_timber_prod_cost_woodfuel Cost for prodcing one unit of woodfuel (USD17MER per tDM) / 74 / + s73_free_prod_cost Very high cost for settling demand without production (USD17MER per tDM) / 24600 / s73_timber_demand_switch Logical switch to turn on or off timber demand 1=on 0=off (1) / 1 / s73_increase_ceiling Limiter for not allowing a demand jump between time steps beyond a certain limit (1) / 1.025 / s73_residue_ratio Proportion of overall industrial roundwood production which ends up as residue during harvest (1) / 0.15 / - s73_reisdue_removal_cost Cost of removing residues left after industrial roundwood harvest (USD per tDM) / 2 / + s73_reisdue_removal_cost Cost of removing residues left after industrial roundwood harvest (USD17MER per tDM) / 2.5 / s73_expansion Construction wood demand expansion factor by end of century based on industrial roundwood demand as base (1=100 percent increase) / 0 / ; diff --git a/modules/80_optimization/lp_nlp_apr17/declarations.gms b/modules/80_optimization/lp_nlp_apr17/declarations.gms index 18bc7ca4d9..514d7bd6fa 100644 --- a/modules/80_optimization/lp_nlp_apr17/declarations.gms +++ b/modules/80_optimization/lp_nlp_apr17/declarations.gms @@ -12,5 +12,5 @@ parameters scalars s80_counter counter (1) - s80_obj_linear linear objective value (mio. USD05MER per yr) + s80_obj_linear linear objective value (mio. USD17MER per yr) ; diff --git a/scripts/npi_ndc/start_npi_ndc.R b/scripts/npi_ndc/start_npi_ndc.R index 9b4681768b..68ecf70a37 100644 --- a/scripts/npi_ndc/start_npi_ndc.R +++ b/scripts/npi_ndc/start_npi_ndc.R @@ -182,7 +182,7 @@ calc_NPI_NDC <- function(policyregions = "iso", npi_aff <- droplevels(subset(pol_def, policy=="npi" & landpool=="affore")) addtable(npi_aff[,c(-2,-3)]) npi_aff <- calc_policy(npi_aff, land_stock, pol_type="aff", pol_mapping=pol_mapping, - weight=dimSums(land_stock[,2005,c("crop","past")]), + weight=dimSums(land_stock[,2005,c("crop","past")]) + 10^-10, map_file=map_file) getNames(npi_aff) <- "npi" cat(paste0(" (time elapsed: ",format(proc.time()["elapsed"]-ptm,width=6,nsmall=2,digits=2),"s)\n")) @@ -195,7 +195,7 @@ calc_NPI_NDC <- function(policyregions = "iso", ndc_aff <- droplevels(subset(pol_def, policy=="ndc" & landpool=="affore")) addtable(ndc_aff[,c(-2,-3)]) ndc_aff <- calc_policy(ndc_aff, land_stock, pol_type="aff", pol_mapping=pol_mapping, - weight=dimSums(land_stock[,2005,c("crop","past")]), + weight=dimSums(land_stock[,2005,c("crop","past")]) + 10^-10, map_file=map_file) getNames(ndc_aff) <- "ndc" #set all values before 2015 to NPI values; copy the values til 2010 from the NPI data diff --git a/scripts/output/extra/disaggregation.R b/scripts/output/extra/disaggregation.R index e9e31f3367..e4e963989e 100644 --- a/scripts/output/extra/disaggregation.R +++ b/scripts/output/extra/disaggregation.R @@ -450,7 +450,7 @@ message("Disaggregating BII values") # Load input data for BII disaggregation land_ini_hr <- read.magpie(land_hr_file)[, "y1995", ] side_layers_hr <- read.magpie(luh_side_layers) -landArea <- dimSums(land_ini_hr, dim = 3) +landArea <- dimSums(land_ini_hr, dim = 3) + 10^-10 side_layers_lr <- toolAggregate(x = side_layers_hr, rel = map_file, weight = landArea, from = "cell", to = "cluster") # Convert land types for BII disaggregation diff --git a/scripts/output/extra/highres.R b/scripts/output/extra/highres.R index c1768e03d6..f4e9dbe328 100644 --- a/scripts/output/extra/highres.R +++ b/scripts/output/extra/highres.R @@ -152,10 +152,14 @@ highres <- function(cfg = cfg, res = "c1000", tc = NULL) { cfg$gms$s15_elastic_demand <- 0 #get exogenous bioenergy demand and GHG prices from c200 run because these files may have been overwritten - write.magpie(readGDX(gdx,"f56_pollutant_prices_coupling"),"modules/56_ghg_policy/input/f56_pollutant_prices_coupling.cs3") - write.magpie(readGDX(gdx,"f56_pollutant_prices_emulator"),"modules/56_ghg_policy/input/f56_pollutant_prices_emulator.cs3") - write.magpie(readGDX(gdx,"f60_bioenergy_dem_coupling"),"modules/60_bioenergy/input/reg.2ndgen_bioenergy_demand.csv") - write.magpie(readGDX(gdx,"f60_bioenergy_dem_emulator"),"modules/60_bioenergy/input/glo.2ndgen_bioenergy_demand.csv") + a <- readGDX(gdx,"f56_pollutant_prices_coupling", react = "silent") + if(!is.null(a)) write.magpie(a,"modules/56_ghg_policy/input/f56_pollutant_prices_coupling.cs3") + a <- readGDX(gdx,"f56_pollutant_prices_emulator", react = "silent") + if(!is.null(a)) write.magpie(a,"modules/56_ghg_policy/input/f56_pollutant_prices_emulator.cs3") + a <- readGDX(gdx,"f60_bioenergy_dem_coupling", react = "silent") + if(!is.null(a)) write.magpie(a,"modules/60_bioenergy/input/reg.2ndgen_bioenergy_demand.csv") + a <- readGDX(gdx,"f60_bioenergy_dem_emulator", react = "silent") + if(!is.null(a)) write.magpie(a,"modules/60_bioenergy/input/glo.2ndgen_bioenergy_demand.csv") #get regional afforestation patterns from low resolution run with c200 aff <- dimSums(landForestry(gdx)[,,c("aff","ndc")],dim=3) diff --git a/scripts/start/extra/recalibrateH16.R b/scripts/start/extra/recalibrateH16.R new file mode 100644 index 0000000000..b576926d9b --- /dev/null +++ b/scripts/start/extra/recalibrateH16.R @@ -0,0 +1,33 @@ +# | (C) 2008-2024 Potsdam Institute for Climate Impact Research (PIK) +# | authors, and contributors see CITATION.cff file. This file is part +# | of MAgPIE and licensed under AGPL-3.0-or-later. Under Section 7 of +# | AGPL-3.0, you are granted additional permissions described in the +# | MAgPIE License Exception, version 1.0 (see LICENSE file). +# | Contact: magpie@pik-potsdam.de + +# -------------------------------------------------------- +# description: calculate and store new land conversion cost calibration factors for default setup (time consuming; up to 40 model runs with 5 time steps) +# -------------------------------------------------------- + +library(magpie4) +library(magclass) + +# Load start_run(cfg) function which is needed to start MAgPIE runs +source("scripts/start_functions.R") + +#start MAgPIE run +source("config/default.cfg") +cfg$input['regional'] <- "rev4.112_36f73207_magpie.tgz" +cfg$input['validation'] <- "rev4.112_36f73207_validation.tgz" +cfg$input['calibration'] <- "calibration_H16_27Sep24.tgz" +cfg$input['cellular'] <- "rev4.112_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + +cfg$results_folder <- "output/:title:" +cfg$recalibrate <- FALSE +cfg$recalibrate_landconversion_cost <- TRUE +cfg$title <- "calib_run_H16" +cfg$output <- c("rds_report") +cfg$force_replace <- TRUE +cfg$qos <- "priority" +start_run(cfg,codeCheck=FALSE) +magpie4::submitCalibration("H16") diff --git a/scripts/start/extra/recalibrate_FSEC.R b/scripts/start/extra/recalibrate_FSEC.R index 0611437f08..1b33e460b3 100644 --- a/scripts/start/extra/recalibrate_FSEC.R +++ b/scripts/start/extra/recalibrate_FSEC.R @@ -20,12 +20,12 @@ source("scripts/projects/fsec.R") # Calibration run cfg <- fsecScenario(scenario = "c_BAU") -cfg$title <- "FSEC23Mar2024" +cfg$title <- "calib_run_FSEC" cfg$results_folder <- "output/:title:" cfg$recalibrate <- TRUE # required when penality_apr22 activated cfg$best_calib <- TRUE cfg$recalibrate_landconversion_cost <- TRUE -cfg$best_calib_landconversion_cost <- FALSE +cfg$best_calib_landconversion_cost <- TRUE cfg$output <- c("rds_report") cfg$force_replace <- TRUE cfg$qos <- "priority" diff --git a/scripts/start/extra/recalibrate_default.R b/scripts/start/extra/recalibrate_default.R index 69f52a17f3..fdf41a97ae 100644 --- a/scripts/start/extra/recalibrate_default.R +++ b/scripts/start/extra/recalibrate_default.R @@ -20,7 +20,7 @@ source("config/default.cfg") cfg$results_folder <- "output/:title:" cfg$recalibrate <- FALSE cfg$recalibrate_landconversion_cost <- TRUE -cfg$title <- "calib_run" +cfg$title <- "calib_run_H12" cfg$output <- c("rds_report") cfg$force_replace <- TRUE cfg$qos <- "priority" diff --git a/scripts/start/projects/paper_peatlandTax.R b/scripts/start/projects/paper_peatlandTax.R index 91824915f5..ea1b26ee82 100644 --- a/scripts/start/projects/paper_peatlandTax.R +++ b/scripts/start/projects/paper_peatlandTax.R @@ -23,7 +23,7 @@ source("scripts/start_functions.R") source("config/default.cfg") # create additional information to describe the runs -cfg$info$flag <- "PTax24" +cfg$info$flag <- "PTax32" cfg$results_folder <- "output/:title:" cfg$results_folder_highres <- "output" @@ -44,10 +44,10 @@ cfg$repositories <- append( getOption("magpie_repos") ) -cfg$input['regional'] <- "rev4.111_36f73207_magpie.tgz" -cfg$input['validation'] <- "rev4.111_36f73207_validation.tgz" -cfg$input['calibration'] <- "calibration_H16_14Jun24.tgz" -cfg$input['cellular'] <- "rev4.111_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" +cfg$input['regional'] <- "rev4.112_36f73207_magpie.tgz" +cfg$input['validation'] <- "rev4.112_36f73207_validation.tgz" +cfg$input['calibration'] <- "calibration_H16_27Sep24.tgz" +cfg$input['cellular'] <- "rev4.112_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" download_and_update(cfg) ## Create patch file for GHG prices @@ -147,9 +147,9 @@ cfg$gms$s56_c_price_induced_aff <- 0 ## Start scenarios for (res in c("c400")) { if (res == "c400") - cfg$input['cellular'] <- "rev4.111_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + cfg$input['cellular'] <- "rev4.112_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" else if (res == "c1000") { - cfg$input['cellular'] <- "rev4.111_36f73207_10f98ac1_cellularmagpie_c1000_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + cfg$input['cellular'] <- "rev4.112_36f73207_10f98ac1_cellularmagpie_c1000_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" } ## Ref scenario cfg$title <- .title(cfg, paste(res, ssp, "Ref", sep = "-")) @@ -166,6 +166,7 @@ for (res in c("c400")) { "T400-GHG-GWP20")) { cfg$title <- .title(cfg, paste(res, ssp, tax, sep = "-")) cfg$gms$c56_mute_ghgprices_until <- "y2025" + cfg$gms$s58_cost_drain_intact_onetime <- 10000 cfg$gms$c56_pollutant_prices <- tax start_run(cfg, codeCheck = FALSE) } diff --git a/scripts/start/projects/project_ABCDR.R b/scripts/start/projects/project_ABCDR.R index 8b1480c537..cf8092828e 100644 --- a/scripts/start/projects/project_ABCDR.R +++ b/scripts/start/projects/project_ABCDR.R @@ -19,7 +19,7 @@ source("config/default.cfg") #download_and_update(cfg) # create additional information to describe the runs -cfg$info$flag <- "ABCDR08" +cfg$info$flag <- "ABCDR12" cfg$results_folder <- "output/:title:" cfg$force_replace <- TRUE @@ -31,54 +31,52 @@ cfg$qos <- "standby_highMem_dayMax" .title <- function(cfg, ...) return(paste(cfg$info$flag, sep="_",...)) -cfg$input['regional'] <- "rev4.111_36f73207_magpie.tgz" -cfg$input['validation'] <- "rev4.111_36f73207_validation.tgz" -cfg$input['calibration'] <- "calibration_H16_14Jun24.tgz" -cfg$input['cellular'] <- "rev4.111_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" +cfg$input['regional'] <- "rev4.112_36f73207_magpie.tgz" +cfg$input['validation'] <- "rev4.112_36f73207_validation.tgz" +cfg$input['calibration'] <- "calibration_H16_27Sep24.tgz" +cfg$input['cellular'] <- "rev4.112_36f73207_44a213b6_cellularmagpie_c400_MRI-ESM2-0-ssp370_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" ssp <- "SSP2" cfg$gms$cropland <- "detail_apr24" - cfg$gms$scen_countries15 <- isoCountriesEUR cfg$gms$policy_countries29 <- isoCountriesEUR cfg$gms$policy_countries30 <- isoCountriesEUR - -cfg$gms$s29_treecover_keep <- 0 -cfg$gms$s29_treecover_penalty_before <- 0 -cfg$gms$s29_treecover_penalty <- 5000 -cfg$gms$s30_betr_penalty <- 0 - cfg$gms$s29_fader_functional_form <- 1 # linear fader cfg$gms$s29_treecover_scenario_start <- 2025 cfg$gms$s29_treecover_scenario_target <- 2060 for (pol in c("NDC","1p5deg","1p5deg-Diet")) { for (shr in c(0, 0.005, 0.01, 0.02)) { # share in 2045 - cfg$title <- .title(cfg, paste(ssp,pol,paste0("AFS_tree_",sub("\\.","p",as.character(shr*100))),sep="-")) - if (pol == "NDC") { - cfg <- setScenario(cfg,c(ssp,"NDC","rcp4p5")) - cfg$input['cellular'] <- "rev4.111_36f73207_30c9dc61_cellularmagpie_c400_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" - cfg$gms$c56_mute_ghgprices_until <- "y2150" - cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-NDC") - cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-NDC") - } else if (pol == "1p5deg") { - cfg <- setScenario(cfg,c(ssp,"NDC","rcp1p9")) - cfg$input['cellular'] <- "rev4.111_36f73207_bc624950_cellularmagpie_c400_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" - cfg$gms$c56_mute_ghgprices_until <- "y2030" - cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") - cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") - } else if (pol == "1p5deg-Diet") { - cfg <- setScenario(cfg,c(ssp,"NDC","rcp1p9","eat_lancet_diet_v1")) - cfg$input['cellular'] <- "rev4.111_36f73207_bc624950_cellularmagpie_c400_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" - cfg$gms$c56_mute_ghgprices_until <- "y2030" - cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") - cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") + for (growth in c(0,1)) { + cfg$title <- .title(cfg, paste(ssp,pol,ifelse(growth==0,"natveg","plant"),paste0("AFS_tree_",sub("\\.","p",as.character(shr*100))),sep="-")) + if (pol == "NDC") { + cfg <- setScenario(cfg,c(ssp,"NDC","rcp4p5")) + cfg$input['cellular'] <- "rev4.112_36f73207_30c9dc61_cellularmagpie_c400_MRI-ESM2-0-ssp245_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + cfg$gms$c56_mute_ghgprices_until <- "y2150" + cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-NDC") + cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-NDC") + } else if (pol == "1p5deg") { + cfg <- setScenario(cfg,c(ssp,"NDC","rcp1p9")) + cfg$input['cellular'] <- "rev4.112_36f73207_bc624950_cellularmagpie_c400_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + cfg$gms$c56_mute_ghgprices_until <- "y2030" + cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") + cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") + } else if (pol == "1p5deg-Diet") { + cfg <- setScenario(cfg,c(ssp,"NDC","rcp1p9","eat_lancet_diet_v1")) + cfg$input['cellular'] <- "rev4.112_36f73207_bc624950_cellularmagpie_c400_MRI-ESM2-0-ssp119_lpjml-8e6c5eb1_clusterweight-ba4466a8.tgz" + cfg$gms$c56_mute_ghgprices_until <- "y2030" + cfg$gms$c56_pollutant_prices <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") + cfg$gms$c60_2ndgen_biodem <- paste0("R32M46-", if (ssp=="SSP2") "SSP2EU" else ssp,"-PkBudg650") + } + cfg$gms$s29_treecover_target <- shr / (2045 - 2025) * (2060 - 2025) # Continue linear increase after 2045 until 2060 + cfg$gms$s30_betr_target <- 0 + cfg$gms$s30_betr_penalty <- 0 + cfg$gms$s29_treecover_plantation <- growth + cfg$gms$s29_treecover_bii_coeff <- growth + start_run(cfg, codeCheck = FALSE) } - cfg$gms$s29_treecover_target <- shr / (2045 - 2025) * (2060 - 2025) # Continue linear increase after 2045 until 2060 - cfg$gms$s30_betr_target <- 0 - start_run(cfg, codeCheck = FALSE) } } diff --git a/scripts/start/projects/project_BEST.R b/scripts/start/projects/project_BEST.R index c525421d52..94122196c7 100644 --- a/scripts/start/projects/project_BEST.R +++ b/scripts/start/projects/project_BEST.R @@ -13,7 +13,7 @@ #### Script to start a MAgPIE run #### ###################################### -version <- "V13" +version <- "V14" library(lucode2) library(magclass) @@ -29,7 +29,7 @@ source("scripts/start_functions.R") calc_bioen <- function(x) { #B0 B0 <- new.magpie("GLO",seq(1995,2150,by=5),NULL,fill = 0) - + #B50 #50 EJ in 2050 globally, linear interpolation B50 <- new.magpie("GLO",c(seq(1995,2020,by=5),2050,2100,2150),NULL,fill = 0) @@ -43,7 +43,7 @@ calc_bioen <- function(x) { #B100 #100 EJ in 2050 globally, linear interpolation B100 <- B50*2 - + if (x == "B0") { return(B0) } else if (x == "B50") { @@ -108,18 +108,20 @@ for (rcp in rcps) { for (ssp in ssps) { cfg$title <- paste("TAU",ssp,rcp,tau_scen,sep="-") cfg <- setScenario(cfg,c(ssp,"NPI",rcp)) + cfg <- setScenario(cfg, "fix_2020", scenario_config = "config/projects/scenario_config_year_fix.csv") cfg$gms$s32_max_aff_area <- 0 cfg$gms$s56_c_price_induced_aff <- 0 cfg$gms$c30_bioen_type <- bioen_type cfg$gms$c30_bioen_water <- bioen_water cfg$gms$tc <- "endo_jan22" x <- try(modelstat(file.path("output",cfg$title,"fulldata.gdx")),silent = TRUE) - if(any(!x %in% c(2,7))) { + if(is.null(x) | (is.magpie(x) & any(!x %in% c(2,7)))) { download_and_update(cfg) write.magpie(calc_bioen(biodem),"modules/60_bioenergy/input/glo.2ndgen_bioenergy_demand.csv") write.magpie(calc_ghgprice(ghgprice),"modules/56_ghg_policy/input/f56_pollutant_prices_emulator.cs3") start_run(cfg,codeCheck=FALSE) message(paste0("TAU run started: ",cfg$title)) + Sys.sleep(10) } } } @@ -132,12 +134,12 @@ while (!success) { for (rcp in rcps) { for (ssp in ssps) { x <- try(modelstat(file.path("output",paste("TAU",ssp,rcp,tau_scen,sep="-"),"fulldata.gdx")),silent = TRUE) - if (is(x, "try-error")) x <- NULL else if (is.magpie(x) & all(x %in% c(2,7))) x <- add_dimension(collapseNames(x),dim = 3.1,add = "scen",nm = paste0(ssp,rcp)) + if (is.magpie(x) & all(x %in% c(2,7))) { + x <- add_dimension(collapseNames(x),dim = 3.1,add = "scen",nm = paste0(ssp,rcp)) + } else x <- NULL z <- mbind(z,x) } } - print(str(z)) - print(dim(z)) if (is.null(z)) { message("Not any model run with endogenous TAU finished. Sleeping for 10 minutes.") Sys.sleep(60*10) @@ -158,6 +160,7 @@ for (rcp in rcps) { for (bioen_type in c("all","begr","betr")) { for (bioen_water in c("all","rainfed")) { cfg <- setScenario(cfg,c(ssp,"NPI",rcp)) + cfg <- setScenario(cfg, "fix_2020", scenario_config = "config/projects/scenario_config_year_fix.csv") cfg$title <- paste(version,ssp,rcp,biodem,ghgprice,paste0("Type",toupper(bioen_type)),paste0("Water",toupper(bioen_water)),sep="-") cfg$gms$s32_max_aff_area <- 0 cfg$gms$s56_c_price_induced_aff <- 0 diff --git a/scripts/start/projects/project_EAT2p0.R b/scripts/start/projects/project_EAT2p0.R index 83c759c07b..ae7c3e06c8 100644 --- a/scripts/start/projects/project_EAT2p0.R +++ b/scripts/start/projects/project_EAT2p0.R @@ -90,7 +90,7 @@ bau <- function(cfg) { cfg$gms$c60_2ndgen_biodem <- "R21M42-SSP2-NPi" # default # Climate Change - cfg$input["cellular"] <- "rev4.111EL2_h12_c6a7458f_cellularmagpie_c200_IPSL-CM6A-LR-ssp370_lpjml-8e6c5eb1.tgz" + cfg$input["cellular"] <- "rev4.112EL2_h12_c6a7458f_cellularmagpie_c200_IPSL-CM6A-LR-ssp370_lpjml-8e6c5eb1.tgz" return(cfg) }