-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLstar.hs
119 lines (97 loc) · 3.42 KB
/
Lstar.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
module Lstar where
import Data.List
import Data.Maybe
import Automata
import Teacher
data Bin = O | I deriving (Show, Eq)
data LearnerState sym = LearnerState {
getR :: [[sym]],
getE :: [[sym]],
getG :: [([sym], [Bin])],
getGS :: [([sym], sym, [Bin])]
}
class Finite sym where
universe :: [sym]
findEquivState :: LearnerState sym -> [sym] -> sym -> [sym]
findEquivState lstate state sym = undefined
instance Show sym => Show (LearnerState sym) where
show lstate =
"[R] " ++ show (getR lstate) ++ "\n" ++
"[E] " ++ show (getE lstate) ++ "\n" ++
"[G] " ++ show (getG lstate) ++ "\n" ++
"[GS] " ++ show (getGS lstate)
boolToBin :: Bool -> Bin
boolToBin True = I
boolToBin False = O
binToBool :: Bin -> Bool
binToBool I = True
binToBool O = False
lift :: a -> [a]
lift x = [x]
data AnswerOfIsClosed sym = HasNext [sym] | NewNext [sym]
instance Show sym => Show (AnswerOfIsClosed sym) where
show (HasNext state) = "[NEXT] " ++ show state
show (NewNext state) = "[NEW] " ++ show state
fromHasNext (HasNext r) = r
isNew (NewNext _) = True
isNew _ = False
isClosed :: [([sym], [Bin])] -> ([sym], sym, [Bin]) -> AnswerOfIsClosed sym
isClosed g (r, a, bins) =
case find (\(_, bins') -> bins == bins') g of
Just (r', _) -> HasNext r'
Nothing -> NewNext (r ++ [a])
isClosedLstate :: Eq sym => LearnerState sym -> AnswerOfIsClosed sym
isClosedLstate lstate =
case find isNew (map (isClosed (getG lstate)) $ getGS lstate) of
Just new -> new
_ -> HasNext []
handleNewNext :: (Eq sym, Finite sym) =>
([sym] -> Bin) -> LearnerState sym -> [sym] -> LearnerState sym
handleNewNext mem lstate newState =
LearnerState (newState : r) e g' gs'
where
r = getR lstate
e = getE lstate
g = getG lstate
g' = g ++ [(newState, map (mem . (newState++)) e)]
gs = getGS lstate
nextStep sym = (newState, sym, map (mem . (newState++) . (sym:)) e)
gs' = gs ++ map nextStep universe
handleCex :: (Eq sym, Finite sym) =>
([sym] -> Bin) -> LearnerState sym -> [sym] -> LearnerState sym
handleCex mem lstate newE =
LearnerState r (newE : e) g' gs'
where
r = getR lstate
e = getE lstate
g = getG lstate
g' = map (\(state, bins) -> (state, mem (state ++ newE):bins)) g
gs = getGS lstate
gs' = map (\(state, sym, bins) -> (state, sym, mem (state ++ sym:newE):bins)) gs
makeAutomata :: Eq sym => LearnerState sym -> Automata [sym] sym
makeAutomata lstate = Automata states [] finals (Trans trans)
where
states = getR lstate
finals = map fst $ filter (binToBool . last . snd) $ getG lstate
findNext s@(r, a, bins) =
(r, a, fromHasNext . isClosed (getG lstate) $ s)
trans = map findNext $ getGS lstate
lstar :: (Eq sym, Finite sym) =>
Teacher sym -> Automata [sym] sym
lstar teacher = makeAutomata (lstar' initLearnerState)
where
mem = boolToBin . isMember teacher
equiv = isEquiv teacher
lstar' lstate =
case isClosedLstate lstate of
NewNext state -> lstar' (handleNewNext mem lstate state)
_ ->
let conjecture = makeAutomata lstate in
case equiv conjecture of
EQUIV -> lstate
CEX cex -> lstar' (handleCex mem lstate cex)
initLearnerState = LearnerState [[]] [[]] initg initgs
initg = [([], [boolToBin $ isMember teacher []])]
initgs =
zip3 (repeat []) universe
(map (lift . boolToBin . isMember teacher . lift) universe)