-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassifier.py
495 lines (388 loc) · 15.5 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
'''
Created on Aug 23, 2015
@author: tarek, maged
'''
import csv
import time
from itertools import product
from collections import Counter
from collections import defaultdict
import config
from joiner import build_tags, create_df
import pickle
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn import metrics
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.naive_bayes import MultinomialNB, GaussianNB
from sklearn.feature_selection import SelectKBest, chi2, f_classif
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier
from sklearn.model_selection import StratifiedKFold, GroupKFold, KFold, cross_val_score
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from scipy.stats import chi2_contingency
# from stats import visualize
col_names = []
def prepare_data(feats_file,tags_file, multi, row_mode, feat_mode, difficulties):
f = open(feats_file, 'rb')
inst_feats = pickle.load(f)
# inst_feats = pd.read_pickle(f, compression='None')
# print('prepare data inst feats contains 733 F', inst_feats[inst_feats.problem_id.isin(['733/F'])])
# fig, (ax1, ax2) = plt.subplots(2)
# sns.boxplot([inst_feats.variables, inst_feats.operations], orient='v', showfliers=False)
# for col in inst_feats.columns:
# print(inst_feats[col].value_counts())
# print(type(inst_feats))
global tags_list, classes, mlb, col_names
tags_list, delete_keys, inst_tags = build_tags(tags_file, difficulties)
X = []
Y = []
values = []
print(len(delete_keys))
if 'pandas' in feats_file:
inst_feats, X, Y = create_df(inst_feats, inst_tags, delete_keys, multi)
print('prepare data', inst_feats.shape, X.shape, Y.shape)
X = choose_columns(X, feat_mode)
if 'tags' in X.columns:
X = X.drop('tags', axis=1)
# for col in X.columns:
# print(col, X[col].isnull().any())
col_names = X.columns
# visualize(inst_feats)
# conting = pd.crosstab(pd.DataFrame(X)['int'], np.array(Y).flatten())
# print(chi2_contingency(conting))
else:
for key in delete_keys:
del inst_feats[key]
for instance in inst_feats:
if instance in inst_feats and instance in inst_tags:
if row_mode == 'problem':
X.append(inst_feats[instance])
Y.append(inst_tags[instance])
elif row_mode == 'submiss':
for submission in inst_feats[instance]:
X.append(submission)
Y.append(inst_tags[instance])
X = np.array(X)
Y = np.array(Y).ravel()
print(Y)
# feature scaling
# X-=np.mean(X)
# if np.std(X) > 0:
# X/=np.std(X)
# X = StandardScaler().fit_transform(X)
# if 'pandas' in feats_file:
# for col in X:
# X[col] = (X[col] - X[col].mean())/(X[col].std() if X[col].std() != 0 else 1)
#
# pca = PCA(n_components = 2)
# pca.fit(X)
# X = pca.fit_transform(X)
# print(pca.components_, '\n', pca.explained_variance_)
# print(Y)
if multi:
mlb = MultiLabelBinarizer()
lsts = []
for lst in Y:
lsts += lst
values, counts = np.unique(lsts, return_counts=True)
counts, values = (list(t) for t in zip(*sorted(zip(counts, values))))
# print('COUNTS: ', values, counts)
Y = mlb.fit_transform(Y)
classes = mlb.classes_
print(classes)
# labels = mlb.labels_
# print(classes, labels)
else:
Y = Y.flatten()
values, counts = np.unique(Y, return_counts=True)
classes = np.unique(Y)
# for col in X.columns:
# X[col] = X[col].map(lambda x : logzero(x))
return (X,Y, values)
def logzero(x):
if x == 0:
return 0
else:
return np.log(x)
def get_baseline_single(Y):
''' Returns the baseline for classifier by selecting the most common label in Y
'''
values, counts = np.unique(Y, return_counts=True)
classes = np.unique(Y)
baseline = np.max(counts)/np.sum(counts)
print('Baseline = ', baseline)
return baseline
def choose_columns(X, feat_mode):
# for i in range(15,X.shape[1]-1):
# X = np.delete(X, i, 1)
# X = np.delete(X, [19,20,21,22,23], 1)
# X = SelectKBest(f_classif, k = 20).fit_transform(X, y)
feats = {'count_vars':['int', 'double', 'float', 'char', 'vector', 'll', 'point', 'arrays'],\
'constructs': ['single_loop', 'double_loop', 'triple_loop', 'if_loop', 'ifs'],\
'operations':['operations', 'plus', 'minus', 'times', 'divide', 'modulus',\
'+','-','*','/','%','+=','-=','*=','/=','++','--'],\
'lines': ['lines'],\
'cyclo': ['cyclo'], \
'functions': ['min', 'max']}
if 'all_feats' in feat_mode and 'cyclo' not in feat_mode:
# return X
return X.drop(['cyclo'], axis=1)
elif 'all_feats' in feat_mode:
return X
lst = []
# lst+= ['triple_loop']
# lst += ['int', 'double', 'float', 'char', 'vector', 'll', 'point', 'arrays']
# lst += ['single_loop', 'double_loop', 'triple_loop', 'if_loop', 'ifs']
# lst += ['operations', 'plus', 'minus', 'times', 'divide', 'modulus']
#lst+=['lines']
for feat in feat_mode:
lst+=feats[feat]
# lst+=['problem_id', 'id']
X = X.loc[:,lst]
print('Selecting feats', X.shape)
return X
def classify(train,gold,test, test_y,multi, classifier):
svm_dict = {'random_state':0, 'class_weight':'balanced', 'C':1, 'dual':False}
# svm_dict = {}
clf_dict = {'SVM': svm.LinearSVC(**svm_dict), 'RFT': RandomForestClassifier(n_estimators=100, n_jobs = 6),\
'ADA': AdaBoostClassifier(n_estimators = 100),\
'KNN': KNeighborsClassifier(n_neighbors = 20, weights='distance'), 'LRC': LogisticRegression(), \
'ANN': MLPClassifier(hidden_layer_sizes=tuple([100]*2)), \
'DBT':DecisionTreeClassifier(), 'MNB': MultinomialNB(alpha = 1000),\
'GNB': GaussianNB(), 'LDA': LinearDiscriminantAnalysis(n_components=10)}
clf = classifier
if multi and clf == 'RFT':
clf_dict['RFT'] = RandomForestClassifier(n_estimators=100, n_jobs=6) #, class_weight={0:1, 1:100})
print(clf)
clf = OneVsRestClassifier(clf_dict[clf], n_jobs=7)
# clf = clf_dict[clf]
clf.fit(train, gold)
preds = clf.predict(test)
# if config.print_importances():
# from scikitplot import classifier_factory
# import scikitplot.plotters as skplt
# # classifier_factory(clf)
# skplt.plot_feature_importances(clf, feature_names = train.columns, max_num_features = 7)
# plt.show()
# if classifier == 'RFT':
# print(clf.feature_importances_)
# importances = pd.DataFrame({'feature':train.columns, 'importance': clf.feature_importances_})
# importances = importances.sort_values('importance', ascending=False).set_index('feature')
# print(importances)
# auc = metrics.roc_auc_score(test_y, preds)
# print('Area Under Curve', auc)
# print(prfs, acc)
print(metrics.classification_report(test_y,preds, target_names = classes))
prfs = metrics.precision_recall_fscore_support(test_y, preds, average='micro')
acc = metrics.accuracy_score(test_y, preds)
for i in range(3):
scores[i]+=prfs[i]
scores[3]+=acc
return preds, clf
def get_baseline(lst, Y):
preds = [lst] * len(Y)
# print(mlb.classes_)
preds = mlb.transform(preds)
return metrics.precision_recall_fscore_support(Y, preds, average='micro')
def get_measurements(a,b):
a = np.array(a)
b = np.array(b)
result = defaultdict(float)
result['ACC'] = np.sum(a == b) / len(a)
result['TP'] = np.sum(a + b == 2)
result['TN'] = np.sum(a + b == 0)
result['FN'] = np.sum(np.logical_and(a==0,b==1))
result['FP'] = np.sum(np.logical_and(a==1,b==0))
return result
def get_eval_metrics(results_dict):
p_den = results_dict['TP'] + results_dict['FP']
results_dict['P'] = results_dict['TP'] / (results_dict['TP'] + results_dict['FP']) if p_den > 0 else 0
r_den = results_dict['TP'] + results_dict['FN']
results_dict['R'] = results_dict['TP'] / (results_dict['TP'] + results_dict['FN']) if r_den > 0 else 0
f_den = results_dict['P'] + results_dict['R']
results_dict['F1'] = 2 * ((results_dict['P'] * results_dict['R']) / (results_dict['P'] + results_dict['R'])) if f_den > 0 else 0
return results_dict
def evaluate(pred,test):
macro_scores = dict(zip(tags_list,[defaultdict(float)] * len(tags_list)))
labels = ['ACC','TP','TN','FN','FP','P','R','F1','ACC']
micro_scores = dict((element,0) for element in labels)
macro_average = dict((element,0) for element in labels)
for tag_idx,tag in enumerate(tags_list):
curr_results = get_measurements(pred[:,tag_idx],test[:,tag_idx])
macro_scores[tag] = curr_results
macro_scores[tag] = get_eval_metrics(macro_scores[tag])
print("Macro Scores:\nTag\tP\tR\tF1\tAcc")
for tag in macro_scores:
macro_average = dict(Counter(macro_average) + Counter(macro_scores[tag]))
print( "Averaged Macro Scores:\nP\tR\tF1\tAcc" +"\n"+\
str("%.2f" % (macro_average['P']/len(tags_list))) +"\t"+\
str("%.2f" % (macro_average['R']/len(tags_list))) +"\t"+\
str("%.2f" % (macro_average['F1']/len(tags_list))) +"\t"+\
str("%.2f" % (macro_average['ACC']/len(tags_list))))
for instance_idx in range(len(pred)):
curr_results = get_measurements(pred[instance_idx],test[instance_idx])
micro_scores = dict(Counter(micro_scores) + Counter(curr_results))
micro_scores = get_eval_metrics(micro_scores)
micro_scores['ACC'] = micro_scores['ACC'] / pred.shape[0]
print( "Micro Scores:\nP\tR\tF1\tAcc" +"\n"+ \
str("%.2f" % micro_scores['P']) +"\t"+ \
str("%.2f" % micro_scores['R']) +"\t"+ \
str("%.2f" % micro_scores['F1']) +"\t"+ \
str("%.2f" % micro_scores['ACC']))
for key in macro_average:
macro_average[key] /= len(tags_list)
return(micro_scores,macro_average)
def cross_validate(X,Y,cv_val, multi, classifier):
print("Running " + str(cv_val) + " fold cross validation with classifier = " + classifier)
labels = ['ACC','TP','TN','FN','FP','P','R','F1','ACC']
total_micro = dict((element,0.0) for element in labels)
total_macro = dict((element,0.0) for element in labels)
if multi:
gkf = KFold(n_splits = cv_val, shuffle=True, random_state=0)
for train_idx, test_idx in gkf.split(X, Y):
if row_mode == "pandas" or row_mode == 'pd_out':
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
else:
X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = Y[train_idx], Y[test_idx]
print("Building model for multi cross val, shapes = %s, %s, %s, %s" %\
(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape))
pred, model = classify(X_train,Y_train,X_test,Y_test,True, classifier)
print("Evaluating ...")
eval_res = evaluate(pred, Y_test)
#
total_micro = dict(Counter(total_micro) + Counter(eval_res[0]))
total_macro = dict(Counter(total_macro) + Counter(eval_res[1]))
else:
skf = StratifiedKFold(n_splits=cv_val, shuffle=True, random_state=0)
# print('Cross Val Accuracy', cross_val_score(RandomForestClassifier(n_estimators=100), X, Y, cv=skf))
for train_idx, test_idx in skf.split(X, Y):
if row_mode == "pandas" or row_mode == 'pd_out':
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
else:
X_train, X_test = X[train_idx], X[test_idx]
Y_train, Y_test = Y[train_idx], Y[test_idx]
# print( "Dataset shapes:\n"+\
# "Training X:\t" + str(X_train.shape) + "\n" + \
# "Training Y:\t" + str(Y_train.shape) + "\n" + \
# "Testing X:\t" + str(X_test.shape) + "\n" + \
# "Testing Y:\t" + str(Y_test.shape))
print("Starting Classification...")
print(Y.shape)
pred, model = classify(X_train, Y_train, X_test, Y_test, False, classifier)
# pred = np.zeros(Y_test.shape)
# for i in range(Y_train.shape[1]):
# pred[:,i] = classify(X_train,Y_train[:,i],X_test,Y_test[:,i],False)
print("#############################################################################")
print( "Final Averaged Results" +"\n"+ \
"P\tR\tF1\tAcc" +"\n"+ \
"Averaged Micro Scores\n"+ \
str("%.2f" % (total_micro['P']/cv_val)) +"\t"+ \
str("%.2f" % (total_micro['R']/cv_val)) +"\t"+ \
str("%.2f" % (total_micro['F1']/cv_val)) +"\t"+ \
str("%.2f" % (total_micro['ACC']/cv_val)) +"\n"+ \
"Averaged Macro Scores" +"\n"+ \
str("%.2f" % (total_macro['P']/cv_val)) +"\t"+ \
str("%.2f" % (total_macro['R']/cv_val)) +"\t"+ \
str("%.2f" % (total_macro['F1']/cv_val)) +"\t"+ \
str("%.2f" % (total_macro['ACC']/cv_val)))
print(["%.2f"%(score/cv_val) for score in scores])
def feat_stats(X, Y):
Z = X.assign(label = Y)
print(Z.shape)
# print(X.label???)
print(Z.loc[Z['label']=='graphs', 'variables'].describe())
print(Z.loc[Z['label']=='math', 'variables'].describe())
ax=sns.boxplot(data=Z, x = 'label', y ='variables', showfliers=False)
ax.set_xlabel('Algorithm Class')
ax.set_ylabel('Number of Variables')
plt.show()
np.set_printoptions(precision=3, suppress = True)
split = 0.8
kernel = 'poly'
cross_valid = 3
row_modes = config.get_row_modes()
feat_prefix = config.get_feat_prefix()
feats_files = {'submiss':'features-submissions.pickle', 'problem':'features.pickle', 'pandas':'features-pandas.pickle', \
'pd_out':'features-pandas-no-outliers.pickle'}
# print("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n", row_mode)
classes = []
mlb = None
divs = config.get_div()
ds_dir = config.get_ds_dir()
feat_modes = config.get_feat_modes()
classifiers = config.get_classifiers()
multi = config.get_multi()
algorithm_modes = config.get_algorithm_modes()
difficulties = config.get_difficulties()
limits = config.get_limits()
# print(algorithm_mode, multi, row_mode)
out_file = open('out-classifier.csv', 'a')
for div, algo_mode, classifier, feat_mode, difficulty, row_mode, limit \
in product(divs, algorithm_modes, classifiers, feat_modes, difficulties, row_modes, limits):
if algo_mode != 'categ':
multi = False
print("\n\n\n\n\nXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n", div)
in_dir = ds_dir + div
if multi:
tags_file = in_dir + '-data-set.txt'
else:
tags_file = config.get_tags_file(in_dir, algo_mode)
feats_file = feats_files[row_mode]
feats_file = feat_prefix + feats_file
print('Diff', difficulty)
data = prepare_data(feats_file, tags_file, multi, row_mode, feat_mode, difficulty)
X = data[0]
Y = data[1]
base = data[2]
print(Counter(Y))
# from sklearn.utils import shuffle
# X, Y = shuffle(X, Y, random_state=0)
# X, Y = X[:limit], Y[:limit]
baseline = get_baseline_single(Y)
print("X Shape: ", X.shape)
print("Y Shape: ", Y.shape)
print("No. of tags: ", len(tags_list), tags_list)
print("Algo:", algo_mode)
print(feats_file)
# feat_stats(X, Y)
# continue
if multi:
# get_baseline(['math', 'implementation', 'greedy', 'dp'], Y)
print('Baseline tags:', data[2][-3:])
baseline = get_baseline(data[2][-3:], Y)[2]
print('Multi Baseline = ', baseline)
scores = [0] * 4
cross_validate(X,Y,cross_valid, multi, classifier)
scores = ["%.2f"%(score/cross_valid) for score in scores]
print(classes)
timestamp = time.strftime("%Y/%m/%d %H:%M:%S")
csv_file = open('out-classifier.csv', 'a', newline='')
writer = csv.writer(csv_file, delimiter=",", quoting = csv.QUOTE_NONE)
multi = 1 if multi else 0
writer.writerow([row_mode, algo_mode, multi, div, classifier] + scores +
[format(baseline, '.2f'), timestamp,\
':'.join(feat_mode), ':'.join(difficulty), X.shape[0]])
csv_file.flush()
out_file.flush()
scores = [0]*4
if 'only' in algo_mode or '_' in algo_mode:
preds, all_data_classifier = classify(X, Y, X, Y, False, 'RFT')
print(all_data_classifier)
pickle.dump(all_data_classifier, open('models/%s_model.pickle' % algo_mode, 'wb'))
out_file.close()
# if not os.path.exists('preds.pickle'):
# pred = classify(X_train,Y_train,X_test,True)
# else:
# f = open('preds.pickle', 'rb')
# pred = pickle.load(f)