-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathModel_Ensemble.py
491 lines (357 loc) · 16.7 KB
/
Model_Ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'
import pickle
from datetime import datetime
import cv2
import math
import numpy as np
import matplotlib.pyplot as plt
import os
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
import seaborn as sns
import PIL
import torch
import torch.utils.data as data
from torch.utils.data import Dataset, DataLoader, Subset
from torch.utils.tensorboard import SummaryWriter
from torch.optim import lr_scheduler
import torch.nn as nn
import torch.optim as optim
from torch.nn import functional as F
from torch.nn import init
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
from torch import nn
import time, copy, argparse
import multiprocessing
from matplotlib import pyplot as plt
from sklearn.metrics import f1_score, accuracy_score
from torch import FloatTensor
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.ensemble import ExtraTreesClassifier
from sklearn import svm
import random
import functools
import joblib
from models import ResidualAttentionModel, DenseNet121, MyEnsemble
from utililties import *
def estimate(X_train,y_train):
i = 0
ii = 0
nrows=256
ncolumns=256
channels=1
ntrain=0.85*len(X_train)
nval=0.15*len(X_train)
batch_size=20
epochs=2
# Number of classes
num_cpu = multiprocessing.cpu_count()
num_classes = 2
torch.manual_seed(8)
torch.cuda.manual_seed(8)
np.random.seed(8)
random.seed(8)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
X = []
X_train=np.reshape(np.array(X_train),[len(X_train),])
for img in list(range(0,len(X_train))):
if X_train[img].ndim>=3:
X.append(np.moveaxis(cv2.resize(X_train[img][:,:,:3], (nrows,ncolumns),interpolation=cv2.INTER_CUBIC), -1, 0))
else:
smimg= cv2.cvtColor(X_train[img],cv2.COLOR_GRAY2RGB)
X.append(np.moveaxis(cv2.resize(smimg, (nrows,ncolumns),interpolation=cv2.INTER_CUBIC), -1, 0))
if y_train[img]=='COVID':
y_train[img]=1
elif y_train[img]=='NonCOVID' :
y_train[img]=0
else:
continue
x = np.array(X)
y_train = np.array(y_train)
outputs_all = []
labels_all = []
X_train, X_val, y_train, y_val = train_test_split(x, y_train, test_size=0.15, random_state=0)
image_transforms = {
'train': transforms.Compose([
transforms.Lambda(lambda x: x/255),
transforms.ToPILImage(),
transforms.Resize((230, 230)),
transforms.RandomResizedCrop((224),scale=(0.5,1.0)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
#transforms.ColorJitter(brightness=0.2, contrast=0.2),
transforms.ToTensor(),
transforms.Normalize([0.45271412, 0.45271412, 0.45271412],
[0.33165374, 0.33165374, 0.33165374])
]),
'valid': transforms.Compose([
transforms.Lambda(lambda x: x/255),
transforms.ToPILImage(),
transforms.Resize((230, 230)),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.45271412, 0.45271412, 0.45271412],
[0.33165374, 0.33165374, 0.33165374])
])
}
train_data = MyDataset(X_train, y_train,image_transforms['train'])
valid_data = MyDataset(X_val, y_val,image_transforms['valid'])
dataset_sizes = {
'train':len(train_data),
'valid':len(valid_data)
}
dataloaders = {
'train' : data.DataLoader(train_data, batch_size=batch_size, shuffle=True,
num_workers=num_cpu, pin_memory=True, worker_init_fn=np.random.seed(7), drop_last=False),
'valid' : data.DataLoader(valid_data, batch_size=batch_size, shuffle=True,
num_workers=num_cpu, pin_memory=True, worker_init_fn=np.random.seed(7), drop_last=False)
}
modelA = DenseNet121(num_classes,pretrained=True)
num_ftrs1 = modelA.fc.in_features
checkpoint0 = torch.load('Model_densenet121_state.pth', map_location='cpu')
modelA.load_state_dict(checkpoint0)
modelC = ResidualAttentionModel(2)
num_ftrs2 = modelC.fc.in_features
checkpoint0 = torch.load('Model_residual_state.pth', map_location='cpu')
modelC.load_state_dict(checkpoint0)
model = MyEnsemble(modelA, modelC,num_ftrs1,num_ftrs2)
for param in modelC.parameters():
param.requires_grad_(False)
for param in modelA.parameters():
param.requires_grad_(False)
model = nn.DataParallel(model, device_ids=[ 0, 1,2, 3]).cuda()
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(model.parameters(), lr=0.006775, momentum=0.5518,weight_decay=0.000578)
#optimizer = optim.SGD(model.parameters(), lr=0.006775, momentum=0.5518,weight_decay=0.000578)
optimizer = optim.Adam(model.parameters(), lr=0.0001,weight_decay=0.05)
#scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
scheduler = lr_scheduler.StepLR(optimizer, step_size=35, gamma=0.1)
best_acc = -1
best_f1 = 0.0
best_epoch = 0
best_loss = 100000
since = time.time()
writer = SummaryWriter()
model.train()
for epoch in range(epochs):
print('epoch',epoch)
jj=0
for phase in ['train', 'valid']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
predictions=FloatTensor()
all_labels=FloatTensor()
# Iterate over data.
for inputs, labels in dataloaders[phase]:
#inputs = inputs.to(device, non_blocking=True)
inputs = inputs.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
predictions = predictions.to(device, non_blocking=True)
all_labels = all_labels.to(device, non_blocking=True)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
predictions=torch.cat([predictions,preds.float()])
all_labels=torch.cat([all_labels,labels.float()])
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
if phase == 'train':
jj+= 1
if len(inputs) >=16 :
#print('len(inputs)',len(inputs),i)
writer.add_figure('predictions vs. actuals epoch '+str(epoch)+' '+str(jj) ,
plot_classes_preds(model, inputs, labels))
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_f1=f1_score(all_labels.tolist(), predictions.tolist(),average='weighted')
print(phase, 'confusion_matrix',confusion_matrix(all_labels.tolist(), predictions.tolist()))
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = accuracy_score(all_labels.tolist(), predictions.tolist())
print('{} Loss: {:.4f} Acc: {:.4f} f1: {:.4f}'.format(
phase, epoch_loss, epoch_acc,epoch_f1))
# Record training loss and accuracy for each phase
if phase == 'train':
writer.add_scalar('Train/Loss', epoch_loss, epoch)
writer.add_scalar('Train/Accuracy', epoch_acc, epoch)
writer.flush()
elif phase == 'valid':
writer.add_scalar('Valid/Loss', epoch_loss, epoch)
writer.add_scalar('Valid/Accuracy', epoch_acc, epoch)
writer.flush()
# deep copy the model
if phase == 'valid' and epoch_acc > best_acc:
best_f1 = epoch_f1
best_acc = epoch_acc
best_loss = epoch_loss
best_epoch = epoch
best_model_wts = copy.deepcopy(model.module.state_dict())
best_model_wts_module = copy.deepcopy(model.state_dict())
model.load_state_dict(best_model_wts_module)
torch.save(model, "Model_ensemble.pth")
torch.save(best_model_wts,"Model_ensemble_state.pth")
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best valid Acc: {:4f}'.format(best_acc))
print('Best valid f1: {:4f}'.format(best_f1))
print('best epoch: ', best_epoch)
model.module.classifier2 = nn.Identity()
for param in model.parameters():
param.requires_grad_(False)
clf1 = svm.SVC(kernel='rbf', probability=True)
all_best_accs = {}
all_best_f1s = {}
clf2 = ExtraTreesClassifier(n_estimators=40, max_depth=None, min_samples_split=30, random_state=0)
for phase in ['train','valid']:
outputs_all = []
labels_all = []
model.eval() # Set model to evaluate mode
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device, non_blocking=True)
labels = labels.to(device, non_blocking=True)
outputs = model(inputs)
#print(outputs.shape)
outputs_all.append(outputs)
labels_all.append(labels)
outputs = torch.cat(outputs_all)
#print('outputss',outputs.shape)
labels = torch.cat(labels_all)
# fit the classifier on training set and then predict on test
if phase == 'train':
clf1.fit(outputs.cpu(), labels.cpu())
clf2.fit(outputs.cpu(), labels.cpu())
filename1 = 'classifier_SVM.sav'
filename2 = 'classifier_ExtraTrees.sav'
joblib.dump(clf1, filename1)
joblib.dump(clf2, filename2)
all_best_accs[phase]=accuracy_score(labels.cpu(), clf1.predict(outputs.cpu()))
all_best_f1s[phase]= f1_score(labels.cpu(), clf1.predict(outputs.cpu()))
print(phase, 'confusion_matrix of SVM',confusion_matrix(labels.cpu(), clf1.predict(outputs.cpu())))
print(phase, 'confusion_matrix of ExtraTrees',confusion_matrix(labels.cpu(), clf2.predict(outputs.cpu())))
if phase == 'valid' :
predict = clf1.predict(outputs.cpu())
all_best_accs[phase]=accuracy_score(labels.cpu(), clf1.predict(outputs.cpu()))
all_best_f1s[phase]= f1_score(labels.cpu(), clf1.predict(outputs.cpu()))
print(phase, 'confusion_matrix of SVM',confusion_matrix(labels.cpu(), clf1.predict(outputs.cpu())))
print(phase, 'confusion_matrix of ExtraTrees',confusion_matrix(labels.cpu(), clf2.predict(outputs.cpu())))
print('Best Acc: ',all_best_accs)
print('Best f1: ',all_best_f1s)
return model
def predict(X_test,model_main=None):
i = 0
nrows=256
ncolumns=256
num_classes = 2
bs = 20
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
modelA = DenseNet121(num_classes,pretrained=True)
num_ftrs1 = modelA.fc.in_features
modelB = ResidualAttentionModel(2)
num_ftrs2 = modelB.fc.in_features
model_main = MyEnsemble(modelA, modelB,num_ftrs1,num_ftrs2)
checkpoint0 = torch.load("Model_ensemble_state.pth")
model_main.load_state_dict(checkpoint0)
for param in model_main.parameters():
param.requires_grad_(False)
model_main = nn.DataParallel(model_main, device_ids=[ 0, 1,2, 3]).cuda()
X_t = []
X_test=np.reshape(np.array(X_test),[len(X_test),])
for img in list(range(0,len(X_test))):
if X_test[img].ndim>=3:
X_t.append(np.moveaxis(cv2.resize(X_test[img][:,:,:3], (nrows,ncolumns), interpolation=cv2.INTER_CUBIC), -1, 0))
else:
smimg= cv2.cvtColor(X_test[img],cv2.COLOR_GRAY2RGB)
X_t.append(np.moveaxis(cv2.resize(smimg, (nrows,ncolumns), interpolation=cv2.INTER_CUBIC), -1, 0))
x = np.array(X_t)
y_pred=[]
torch.manual_seed(0)
torch.cuda.manual_seed(0)
np.random.seed(0)
random.seed(0)
device = torch.device("cpu")
model_main.eval()
image_transforms = transforms.Compose([
transforms.Lambda(lambda x: x/255),
transforms.ToPILImage(),
transforms.Resize((230, 230)),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.45271412, 0.45271412, 0.45271412],
[0.33165374, 0.33165374, 0.33165374])
])
dataset = MyDataset_test(x,image_transforms)
dataloader = DataLoader(
dataset,
batch_size=bs,
pin_memory=True,worker_init_fn=np.random.seed(0), drop_last=False)
for inputs in dataloader:
#inputs = torch.from_numpy(inputs).float()
inputs = inputs.to(device, non_blocking=True)
outputs = model_main(inputs)
_, preds = torch.max(outputs, 1)
#pred = clf.predict(outputs.cpu())
for ii in range(len(preds)):
if preds[ii] > 0.5:
y_pred.append('COVID')
else:
y_pred.append('NonCOVID')
i+=1
if i% math.ceil(len(X_test)/bs)==0:
break
model_main.module.classifier2 = nn.Identity()
clf = loaded_model = joblib.load('classifier_ExtraTrees.sav')
for param in model_main.parameters():
param.requires_grad_(False)
y_pred2=[]
for inputs in dataloader:
inputs = inputs.to(device, non_blocking=True)
outputs = model_main(inputs)
preds = clf.predict(outputs.cpu())
for ii in range(len(preds)):
if preds[ii] > 0.5:
y_pred2.append('COVID')
else:
y_pred2.append('NonCOVID')
i+=1
if i% math.ceil(len(X_test)/bs)==0:
break
return y_pred,y_pred2
dbfile = open('sample.pickle', 'rb')
db = pickle.load(dbfile)
model = estimate(db['X_tr'],db['y_tr'])
dbfile = open('sample.pickle', 'rb')
db_test = pickle.load(dbfile)
y_pred,y_pred2 = predict(db_test['X_tr'])
print(y_pred)
print(db_test['y_tr'])
acc= accuracy_score(db_test['y_tr'], y_pred)
acc2= accuracy_score(db_test['y_tr'], y_pred2)
print(acc,acc2)
print(confusion_matrix(db_test['y_tr'], y_pred))
print(confusion_matrix(db_test['y_tr'], y_pred2))
#print(acc,acc2)