forked from KnightKingWalk/KnightKing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dynamic_walk.cpp
96 lines (87 loc) · 3.29 KB
/
dynamic_walk.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ke Yang, Tsinghua University
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "walk.hpp"
#include "option_helper.hpp"
struct WalkState
{
vertex_id_t last_vertex;
};
int main(int argc, char** argv)
{
MPI_Instance mpi_instance(&argc, &argv);
TruncatedRandomWalkOptionHelper opt;
opt.parse(argc, argv);
WalkEngine<real_t, WalkState> graph;
graph.load_graph(opt.v_num, opt.graph_path.c_str(), opt.make_undirected);
WalkConfig walk_conf;
if (!opt.output_path.empty())
{
walk_conf.set_output_file(opt.output_path.c_str());
}
if (opt.set_rate)
{
walk_conf.set_walk_rate(opt.rate);
}
auto init_walker_func = [&] (Walker<WalkState> &walker, vertex_id_t start_vertex)
{
/*At first, the last vertex is not defined*/
walker.data.last_vertex = UINT_MAX;
};
auto update_walker_func = [&] (Walker<WalkState> &walker, vertex_id_t current_v, AdjUnit<real_t> *edge)
{
walker.data.last_vertex = current_v;
};
WalkerConfig<real_t, WalkState> walker_conf(34, init_walker_func, update_walker_func);
auto extension_comp = [&] (Walker<WalkState>& walker, vertex_id_t current_v)
{
return walker.step >= opt.walk_length ? 0.0 : 1.0; /*walk walk_length steps then terminate*/
};
auto static_comp = [&] (vertex_id_t v, AdjUnit<real_t> *edge)
{
return edge->data; /*edge->data is a real number denoting edge weight*/
};
auto dynamic_comp = [&] (Walker<WalkState> &walker, vertex_id_t current_v, AdjUnit<real_t> *edge)
{
if (walker.step == 0)
{
/*No return edge for the first step*/
return 1.0;
} else if (edge->neighbour == walker.data.last_vertex)
{
/*if return edge, double the un-normalized transition probability*/
return 2.0;
} else
{
/*if not return edge*/
return 1.0;
}
};
auto dynamic_comp_upperbound = [&] (vertex_id_t v_id, AdjList<real_t> *adj_lists)
{
return 2.0;
};
TransitionConfig<real_t, WalkState> tr_conf(extension_comp, static_comp, dynamic_comp, dynamic_comp_upperbound);
graph.random_walk(&walker_conf, &tr_conf, &walk_conf);
return 0;
}