-
Notifications
You must be signed in to change notification settings - Fork 4
/
montecarlo.py
81 lines (65 loc) · 2.61 KB
/
montecarlo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import emcee
import inspect
import spectral_distortions as sd
import foregrounds as fg
import fisher
class ForecasterMCMC:
def __init__(fncs=None, duration=86.4, nwalkers=0, gf=1.e-3, threads=16):
if fncs is None:
print "need funcs"
return
fish = fisher.FisherEstimation(duration=duration, bandpass=False)
self.freqs = fish.center_frequencies
self.noise = fish.noise
self.fncs = fncs
self.setup_fncs()
self.generate_data()
self.setup_mcmc(nwalkers, gf, threads)
def setup_fncs(self):
self.args, self.p0, self.argvals = self.get_function_args()
self.setup_priors()
def get_function_args(self):
targs = []
tp0 = []
for fnc in self.fncs:
argsp = inspect.getargspec(fnc)
targs = np.concatenate([targs, argsp[0][1:]])
tp0 = np.concatenate([tp0, argsp[-1]])
return targs, tp0, dict(zip(targs, tp0))
def generate_data(self):
y = self.measure()
yerr = self.noise*np.random.randn(len(self.freqs))
self.data = y + yerr
def setup_mcmc(self, nwalkers, gf, threads):
self.ndim = len(self.args)
if nwalkers>0:
self.nwalkers = nwalkers
else:
selfnwalkers = int(2**np.ceil(np.log2(6*ndim)))
self.pos = [self.p0*(1. + gf*np.random.randn(ndim)) for i in range(self.nwalkers)]
for k in range(len(pos)):
lp = self.lnprior(self.pos[k])
if not np.isfinite(lp):
print "bad"
self.sampler = emcee.EnsembleSampler(self.nwalkers, self.ndim, self.lnprob,\
args=(self.freqs, self.data, self.noise), threads=threads)
def lnprob(self, theta, x, y, yerr):
lp = self.lnprior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + self.lnlike(theta, x, y, yerr)
def measure(self):
#MEASURE!!!!
def setup_priors(self):
#priors!!!
def lnlike(self, theta, x, y, yerr):
mu_amp, y_tot, kT_yweight, DeltaT_amp = theta
model = sd.DeltaI_mu(x, mu_amp)+sd.DeltaI_reltSZ_2param_yweight(x, y_tot, kT_yweight)+\
sd.DeltaI_DeltaT(x, DeltaT_amp)
return -0.5 * (np.sum((y-model)**2. * yerr**-2.))
def lnprior(self, theta):
mu_amp, y_tot, kT_yweight, DeltaT_amp, As, alps, w2s, EM, Ad, Bd, Td, Acib, Bcib, Tcib = theta
if 0<As and alps<0 and 0<EM and 0<Ad and 0<Bd and 0<Td and 0<Acib and 0<Bcib and 0<Tcib:
return 0.
return -np.inf